欢迎登录材料期刊网

材料期刊网

高级检索

采用电子束物理气相沉积(EB-PVD)法在一种新型定向合金DZ466试样上沉积CoCrAlY黏结层和Y2O3部分稳定的ZrO2 (YSZ)陶瓷层,对试样进行1050℃循环氧化实验并研究其氧化行为.采用X射线衍射仪、扫描电镜以及电子探针对涂层进行显微组织分析.结果表明:在1050℃氧化1500h(热循环31次)后,热障涂层未出现脱落现象.沉积态CoCrAlY黏结层主要由β-CoAl相和γCo固溶体相组成;1050℃氧化后,在黏结层与陶瓷层界面生成热生长氧化物(TGO)层,黏结层逐渐发生退化,β-CoAl相逐渐转化为γCoNi固溶体;氧化1200h后,TGO/黏结层界面出现由活性元素效应导致的氧化物栓;TGO层皱曲行为导致TGO/陶瓷层界面出现微裂纹,并且该微裂纹沿界面横向扩展.TGO的厚度增长模式符合分段抛物线规律,初期氧化速率常数约为6.1×1014cm2/s,氧化400h后,氧化速率常数减小,为3.5×1014 cm2/s.

参考文献

[1] LELAIT L;ALPERINE S;DIOT C et al.Thermal barrier coatings:microstructural investigation after annealing[J].materials science and engineering a-structural materials properties microstructure and processing,1989,121(02):475-482.
[2] Nilima Roy;Kersi M. Godiwalla;Satyabata Chaudhuri .Simulation of Bond Coat Properties in Thermal Barrier Coatings During Bending[J].HIGH TEMPERATURE MATERIALS AND PROCESSES,2001(2):103-116.
[3] 徐前岗,陆峰,吴学仁,唐建新.NiCoCrAlYHf/EB-PVD热障涂层的热循环氧化行为[J].中国有色金属学报,2004(09):1519-1524.
[4] KOKINI K;TAKEUCHI Y R .Initiation of surface cracks in multiplayer ceramics thermal barrier coatings under thermal loads[J].Materials Science and Engineering A,1994,189(1-2):301-309.
[5] Ashok K. Ray;Rolf W. Steinbrech .Crack Propagation Studies of Thermal Barrier Coatings Under Bending[J].Journal of the European Ceramic Society,1999(12):2097-2110.
[6] LIH W;CHANG W;CHAO C H et al.Effect of pre-aluminiza tion on the properties of ZrO2-8wt%Y2O3/Co-29Cr-6Al-1Y thermal barrier coatings[J].Oxidation of Metals,1992,38(112):99-124.
[7] CZECH N;KOLARIK V;QUADAKKERS J et al.Oxide layer phase structure of NiCrAlY coatings[J].Surface Engineering,1997,13(05):384-388.
[8] MUMM D R;EVANS A G .Mechanisms controlling the performance and durability of thermal barrier coatings[J].Key Engineering Materials,2001,197(01):199-230.
[9] Nitin P. Padture;Maurice Gell;Eric H. Jordan .Thermal Barrier Coatings for Gas-Turbine Engine Applications[J].Science,2002(5566):280-284.
[10] MILLER R A .Current status of thermal barrier coatings-an overview[J].Surface and Coatings Technology,1987,30(01):1-11.
[11] MILLER R A .Thermal barrier coatings for aircraft engines:history and directions[J].Journal of Thermal Spray Technology,1997,6(01):35-42.
[12] DMITRY N;VLADIMIR S;LORENS S et al.Failure mechanisms of thermal barrier coatings on MCrAlY-type bond coats associated with the formation of the thermally grown oxide[J].Journal of Materials Science,2009,44(07):1687-1703.
[13] A. Manap;A. Nakano;K. Ogawa .The Protectiveness of Thermally Grown Oxides on Cold Sprayed CoNiCrAlY Bond Coat in Thermal Barrier Coating[J].Journal of Thermal Spray Technology,2012(3/4):586-596.
[14] LIANG T Q;GUO H B;PENG H et al.Microstructural evolution of CoCrAlY bond coat on Ni based superalloy DZ 125 at 1050 ℃[J].Surface and Coatings Technology,2011,205(19):4374-4379.
[15] Hui Peng;Hongbo Guo;Jian He;shengkai Gong .Cyclic oxidation and diffusion barrier behaviors of oxides dispersed NiCoCrAlY coatings[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2010(2):411-416.
[16] TAWANCY H M;SRIHAR N;ABBAS N M et al.Comparative thermal stability characteristics and isothermal oxidation behavior of an aluminized and a Pt-aluminized Ni-base superalloy[J].Scripta Metallurgica et Materialia,1995,33(09):1431-1438.
[17] HOU P Y;STRINGER J .The effect of reactive element additions on the selective oxidation,growth and adhesion of chromia scales[J].Materials Science and Engineering A,1995,202(1-2):1-10.
[18] SCHULZ U;MENZEBACH M;LEYENS C et al.Influence of substrate material on oxidation behavior and cyclic lifetime of EBPVD TBC systems[J].Surface and Coatings Technology,2001,146-147:117-123.
[19] GUO H B;CUI Y J;PENG H et al.Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed beta-NiAl coatings for Hf-containing superalloy[J].Corrosion Science,2010,52(04):1440-1446.
[20] John E. Schilbe .Substrate alloy element diffusion in thermal barrier coatings[J].Surface & Coatings Technology,2000(0):35-39.
[21] SHON Y H;KIM J H;JORDAN E H et al.Thermal cycling of EB PVD/MCrAlY thermal barrier coatings: I.Microstructural development and spallation mechanisms[J].Surface and Coatings Technology,2001,146-147:70-78.
[22] D. S. Balint;J. W. Hutchinson .Undulation instability of a compressed elastic film on a nonlinear creeping substrate[J].Acta materialia,2003(13):3965-3983.
[23] Balint DS;Xu T;Hutchinson JW;Evans AG .Influence of bond coat thickness on the cyclic rumpling of thermally grown oxides[J].Acta materialia,2006(7):1815-1820.
[24] V.K. Tolpygo;D.R. Clarke .On the rumpling mechanism in nickel-aluminide coatings Part I: an experimental assessment[J].Acta materialia,2004(17):5115-5127.
[25] D.S. Balint;S.-S. Kim;Yu-Fu Liu .Anisotropic TGO rumpling in EB-PVD thermal barrier coatings under in-phase thermomechanical loading[J].Acta materialia,2011(6):2544-2555.
[26] 韩萌,黄继华,陈树海.热障涂层应力与失效机理若干关键问题的研究进展与评述[J].航空材料学报,2013(05):83-98.
[27] EVANS H E;TAYLOR M P .Diffusion cells and chemical failure of MCrAlY bond coats in thermal-barrier coating systems[J].Oxidation of Metals,2001,55(1-2):17-34.
[28] 李美栓.金属的高温腐蚀[M].北京:冶金工业出版社,2001:36-41.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%