欢迎登录材料期刊网

材料期刊网

高级检索

经过异步轧制工艺获得AZ31镁合金薄板。在300~450℃范围内,分别通过5×10-3,1×10-3 s-1和5×10-4 s-1不同应变速率进行高温拉伸实验研究其超塑性变形行为,计算应变速率敏感指数 m值、超塑性变形激活能 Q及门槛应力σ0值。通过EBSD分析和扫描电镜观察拉伸断裂后的断口形貌,分析AZ31镁合金的超塑性变形机制。结果表明:AZ31镁合金的塑性变形能力随着变形温度的升高及应变速率的降低而增强。当拉伸温度为400℃、m=0.72、应变速率为5×10-4 s-1时,AZ31具有良好的超塑性,伸长率最大为206%。温度为400℃时,异步轧制 AZ31镁合金的超塑性变形是以晶格扩散控制的晶界滑移和基面滑移共同完成的。

AZ31 magnesium alloy sheet was prepared by asynchronous rolling process .From 300℃ to 450℃ ,tensile test was conducted with different strain rates of 5 × 10-3 ,1 × 10-3 s-1 and 5 × 10-4 s-1 respectively to investigate the superplastic deformation behavior of AZ31 magnesium alloy .T he value of the strain rate sensitive index m ,the superplastic deformation activation energy Q and the threshold stress σ0 were also calculated . The superplastic deformation mechanism of AZ31 was investigated through observation of the fracture morphology of the tensile specimens by EBSD and SEM .The re‐sults show that the plastic deformation capacity of AZ31 magnesium alloy enhances with increasing de‐formation temperature and decreasing strain rate .AZ31 magnesium alloy exhibits good superplastici‐ty ,and maximum elongation‐to‐failure of 206% at 400℃ w hen the strain rate is 5 × 10-4 s-1 ,and the m value is 0 .72 .Furthermore ,the superplastic deformation of the asynchronous rolled AZ31 magnesium alloy at 400℃ relies on the joint effects of grain boundary sliding (GBS) controlled by lattice diffusion and basal slip .

参考文献

[1] MORDIKE B L;EBERT T .Magnesium properties-applications-potential[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2001,302(01):37-45.
[2] A.A. Luo;R.K. Mishra;B.R. Powell .Magnesium Alloy Development for Automotive Applications[J].Materials Science Forum,2012(Pt.1):69-82.
[3] 刘旭贺 .超轻超塑性镁锂合金的制备及性能研究[D].哈尔滨:哈尔滨工程大学,2012.
[4] WATANABE H .Mechanical properties and texture of superplas-tically deformed AZ31 magnesium alloy[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2008,477(1 -2):153-161.
[5] BLANDIN J J .Superplastic forming of magnesium alloys:pro-duction of microstructures,superplastic properties,cavitation be-havior[J].Superplasticity in Advanced Materials,2007,551 -552:211-217.
[6] 陈维平,杨冬雨,詹美燕.累积叠轧焊温度和循环道次对AZ31镁合金组织和性能的影响[J].特种铸造及有色合金,2008(05):338-341.
[7] Figueiredo, R.B.;Langdon, T.G. .Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP[J].Journal of Materials Science,2010(17):4827-4836.
[8] 徐淑波;秦振;刘婷 等.剧烈塑性变形对 AZ31 镁合金显微组织和力学性能的影响[J].中国有色金属学报(英文版),2012,22(增刊1):61-67.
[9] 张凯锋,尹德良,王国峰,韩文波.热轧AZ31镁合金超塑变形中的微观组织演变及断裂行为[J].航空材料学报,2005(01):5-10.
[10] 张诗昌,田甜,韦中新,朱明.AZ31镁合金超塑性及其变形机制图[J].特种铸造及有色合金,2009(08):695-697.
[11] Hosokawa H.;Mori T.;Mabuchi M.;Tagata T.;Higashi K.;Iwasaki H. .Effects of Si on deformation behavior and cavitation of coarse-grained Al-4.5mg alloys exhibiting large elongation[J].Acta materialia,1999(6):1859-1867.
[12] 王赛香,张大童,张文,邱诚.热轧MB8镁合金的超塑性[J].材料热处理学报,2012(09):17-22.
[13] 陈晓霞,唐伟能,陈荣石.粗晶Mg-3Gd-1Zn合金高温压缩变形过程中的动态再结晶[J].稀有金属,2012(01):6-12.
[14] MOHANMED F A .On the origin of super plastic flow at very low stress[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2005,410 -411:89-94.
[15] 陈浦泉.组织超塑性[M].哈尔滨:哈尔滨工业大学出版社,1988
[16] 罗晋如,GODFREYAndrew,刘伟,辛仁龙,刘庆.初始织构对高温轧制AZ31镁合金板显微组织与织构影响的EBSD研究[J].电子显微学报,2011(04):299-303.
[17] KELLEY E W;HOSFORD W F .Plane-strain compression of magnesium and magnesium alloy crystals[J].Transactions of the Metallurgical Society of ALME,1968,242(01):5-13.
[18] 孟利,杨平,解延雷,冯惠平.低应变速率下AZ31镁合金热形变过程的取向成像分析[J].中国体视学与图像分析,2004(03):129-133.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%