欢迎登录材料期刊网

材料期刊网

高级检索

采用超声波辅助沉淀法分别在单元掺杂、二元掺杂和不掺杂三种情况下制备了三种不同镍源的纳米氢氧化镍,研究三种阴离子(NO3-,Cl-,SO2-4)对产物晶相结构及稳定性的影响。结果表明:未掺杂时,半径较大的SO2-4离子有利于α‐Ni(OH)2的形成;在单掺杂Co(Ni2+∶Co2+=1∶0.20)时,NO3-离子不仅有利于α‐Ni(OH)2的形成,而且可以使α‐Ni(OH)2在碱液中保持较高的稳定性;当复合掺杂Co/Cu(Ni2+∶Co2+∶Cu2+=1∶0.15∶0.05)时,三种镍源制得的样品均为纯α‐Ni(OH)2结构,但以Ni(NO3)2为镍源的α‐Ni(OH)2在碱液中结构稳定性较高,NiCl2次之,NiSO4较差。可见,α‐Ni(OH)2结构及稳定性既与掺杂情况有关,也与阴离子密切相关。

Nanometer nickel hydroxide with three kinds of nickel sources were synthesized by ultrason‐ic‐assisted precipitation under single , double and no doping condition . T he effect of three anions (NO3- ,Cl- ,SO2 -4 ) which comes from nickel sources on the crystal structure and stability of samples were investigated .The results indicate that the larger ion radius SO2 -4 is more in favor of the forma‐tion of α‐Ni(OH)2 in the case of undoping .In the single doped Co samples(Ni2+ ∶Co2+ =1∶0 .20) , NO3-anion is not only conducive to form α‐Ni(OH)2 ,but also can keep high stability of α‐Ni(OH)2 in alkali solution .When co‐doped Co/Cu(Ni2+ ∶Co2+ ∶Cu2+ =1∶0 .15∶0 .05) ,the samples which were prepared using three nickel sources are all pure α‐Ni(OH)2 structures ,however ,the stability of the nickel nitrate dopedα‐Ni(OH)2 in alkali solution is higher ,which is using Ni(NO3 )2 as nickel source , NiCl2 is lower ,NiSO4 is the lowest .It can be concluded that the structure and stability of α‐Ni(OH)2 is not only related to doping condition ,but also related with anions .

参考文献

[1] 刘长久,吴华斌,李延伟,陈世娟.La(Ⅲ)与Sr(Ⅱ)复合掺杂非晶态氢氧化镍电化学性能研究[J].材料工程,2008(10):68-71,75.
[2] JAYASHREE R S;VISHNU K P .Layered double hydroxides of Ni with Cr and Mn as candidate electrode materials for alkaline secondary cells[J].Journal of Power Sources,2002,107(01):120-124.
[3] 伍尚改,朱燕娟,张仲举,周焯均,叶贤聪,郑汉忠,林晓然,包杰.超声波功率和pH值对Y掺杂纳米Ni(OH)2结构与性能的影响[J].材料工程,2011(06):27-31.
[4] Zhang HB.;Liu HS.;Cao XJ.;Li SJ.;Sun CC. .Preparation and properties of the aluminum-substituted alpha-Ni(OH)(2)[J].Materials Chemistry and Physics,2003(1):37-42.
[5] Jie Bao;Yanjuan Zhu;Zhongju Zhang;Qingsheng Xu;Weiren Zhao;Jian Chen;Wei Zhang;Quanyong Han .Structure and electrochemical properties of nanometer Cu substituted α-nickel hydroxide[J].Materials Research Bulletin: An International Journal Reporting Research on Crystal Growth and Materials Preparation and Characterization,2013(2):422-428.
[6] Mridula Dixit;P. Vishnu Kamath;J. Gopalakrishnan .Zinc-substituted α-nickel hydroxide as an electrode material for alkaline secondary cells[J].Journal of the Electrochemical Society,1999(1):79-82.
[7] 张红兵,浦坦,李道火.Al3+、Zn2+替代镍离子纳米氢氧化镍电极材料[J].电源技术,2004(05):276-281.
[8] DAI J X;LI SAM F Y;XIAO T D et al.Structural stability of aluminum stabilized alpha nickel hydroxide as a positive electrode material for alkaline secondary batteries[J].Journal of Power Sources,2000,89(01):40-45.
[9] 吴梅银,王建明,张鉴清,曹楚南.掺锰氢氧化镍的结构与电化学性能[J].物理化学学报,2005(05):523-527.
[10] ZHANG Z J;ZHU Y J;BAO J et al.Electrochemical perform-ance of multi-element doped α-nickel hydroxide prepared by su-personic co-precipitation method[J].Journal of Alloys and Com-pounds,2011,509(25):7034-7037.
[11] 许庆胜,朱燕娟,赵汝冬,韩全勇,庄义环,曾逸廷.制备条件对Ni(OH)2晶相的影响[J].人工晶体学报,2012(05):1232-1236.
[12] LEE J W;CHOI W C;KIM J D .Size-controlled layered zinc hydroxide intercalated with dodecyl sulfate:effect of alcohol type on dodecyl sulfate template[J].Cryst Eng Comm,2010,12(10):3249-3254.
[13] SUN D;ZHANG J L;REN H J et al.Influence of OH - and SO2 -4 anions on morphologies of the nanosized nickel hydroxide[J].The Journal of Physical Chemistry C,2010,114(28):12110-12116.
[14] Xuefeng Song;Lian Gao .Facile Synthesis and Hierarchical Assembly of Hollow Nickel Oxide Architectures Bearing Enhanced Photocatalytic Properties[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2008(39):15299-15305.
[15] 翁诗甫.傅里叶变换红外光谱仪[M].北京:化学工业出版社,2005:283-286.
[16] N.V. Kosova;E.T. Devyatkina;V.V. Kaichev .Mixed layered Ni-Mn-Co hydroxides: Crystal structure, electronic state of ions, and thermal decomposition[J].Journal of Power Sources,2007(2):735-740.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%