采用直流等离子体增强化学气相沉积技术(DC‐PECVD),通过控制基体负偏压的变化在YG8硬质合金基体上制备一系列类金刚石涂层。选用扫描电子显微镜、原子力显微镜、拉曼光谱、X射线光电子能谱、粗糙度仪对涂层形貌和结构进行表征测试。同时,利用显微硬度计、划痕测试仪系统地分析涂层的显微硬度和界面结合性能。结果表明:随着负偏压增大,涂层表面形貌逐渐平整光滑、致密,颗粒尺寸减小及数量降低。拉曼光谱表明,涂层具有典型的类金刚石结构,涂层中sp3键含量呈先增大后减小趋势,最大值约67.9%出现在负偏压为1000V左右,负偏压过大导致sp3键含量降低。显微硬度随负偏压变化规律与s p3键基本相符,s p3键含量决定显微硬度值大小。负偏压过大对吸附离子产生反溅射作用导致涂层厚度减小。当负偏压为1100V时,涂层与基体间的界面结合性能最优。
A series of diamond‐like‐carbon coatings (DLC) were deposited on top of YG8 cemented carbides by direct current plasma enhanced chemical vapor deposition (DC‐PECVD) in different sub‐strate negative bias voltage .Scanning electron microscopy ,atomic force microscopy ,roughness test‐er ,micro‐hardness tester , scratch tester , Raman spectroscopy , X‐ray photoelectron spectroscopy w ere used to study the composition ,surface morphology ,micro‐hardness and interfacial adhesion per‐formance of the DLC coatings .The results show that the coatings’ surface morphology gradually be‐comes smooth and dense with the increasing of the substrate negative bias voltage .Meanwhile ,the number and size of particles decrease .The DLC coatings exhibit typical diamond‐like characteristics from Raman spectroscopy .The fraction belonging to sp3 valence bond is approach to a maximum value at 1000V and then decreases with the increase of the substrate negative bias voltage .The maximum value of the sp3 valence bond is determined to be about 67.9% .Micro‐hardness varying pattern is con‐sistent with sp3 content change low ,sp3 content determines the micro‐hardness of the DLC coatings . Ions sputtering could lead to the decrease of the thickness w hen the substrate negative bias voltage in‐creases excessively .The best adhesive strength is gained among the coatings when the substrate nega‐tive bias voltage is near to 1100V .
参考文献
[1] | Ohgoe, Y.;Hirakuri, K.K.;Saitoh, H.;Nakahigashi, T.;Ohtake, N.;Hirata, A.;Kanda, K.;Hiratsuka, M.;Fukui, Y..Classification of DLC films in terms of biological response[J].Surface & Coatings Technology,2012:350-354. |
[2] | Balasubramaniam Vengudusamy;Riaz A. Mufti;Gordon D. Lamb;Jonathan H. Green;Hugh A. Spikes .Friction properties of DLC/DLC contacts in base oil[J].Tribology International,2011(7/8):922-932. |
[3] | Wei Dai;Peiling Ke;Myoung-Woon Moon;Kwang-Ryeol Lee;Aiying Wang .Investigation of the microstructure, mechanical properties and tribological behaviors of Ti-containing diamond-like carbon films fabricated by a hybrid ion beam method[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2012(19):6057-6063. |
[4] | Martinez-Martinez, D.;Schenkel, M.;Pei, Y.T.;Sánchez-López, J.C.;De Hosson, J.T.H.M. .Microstructure and chemical bonding of DLC films deposited on ACM rubber by PACVD[J].Surface & Coatings Technology,2011(S2):S75-S78. |
[5] | 李敬财,何玉定,胡社军,黄拿灿.类金刚石薄膜的应用[J].新材料产业,2004(03):39-42. |
[6] | 杨发展,王世庆,沈丽如,陈庆川.不同方法制备的类金刚石薄膜的XPS和Raman光谱的研究[J].光谱学与光谱分析,2011(07):1800-1803. |
[7] | 王雪敏,吴卫东,李盛印,陈松林,唐永建,白黎,王海平.脉冲激光沉积掺W类金刚石膜的性能[J].稀有金属材料与工程,2010(07):1251-1255. |
[8] | 苟伟,李剑锋,楚信谱,张礼平,李国卿.脉冲辉光PECVD制备DLC薄膜的结构和性能研究[J].真空科学与技术学报,2008(z1):33-37. |
[9] | SCHENG Y H;WU Y P;CHEN J G et al.On the deposition mechanism of a-C:H films by plasma enhanced chemical vapor deposition[J].Surface and Coatings Technology,2000,135(01):27-33. |
[10] | 常海波,徐洮,张治军,刘惠文.直流负偏压对类金刚石薄膜结构的影响[J].化学研究,2005(01):35-38. |
[11] | 宋贵宏;杜昊;贺春林.硬质与超硬涂层[M].北京:国防工业出版社,2007:159-162. |
[12] | 周顺,严一心.脉冲真空电弧离子镀在不锈钢上沉积类金刚石薄膜的研究[J].真空,2005(04):15-18. |
[13] | 谢鹏,汪建华,王传新,满卫东,王升高,熊礼威.硬质合金刀具上的类金刚石薄膜硬度的研究[J].硬质合金,2008(04):257-260. |
[14] | 石志峰;黄楠;孙鸿 等.钛过渡层对类金刚石薄膜的膜基结合力以及摩擦学性能的影响[J].功能材料,2008,39(08):1340-1343. |
[15] | 邵霄 .TiC/DLC多层类金刚石薄膜的研究[D].西安工业大学,2008. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%