欢迎登录材料期刊网

材料期刊网

高级检索

采用固相剪切碾磨法(S3 M)制备铝粉和线性低密度聚乙烯(LLDPE)的复合粉体,再经熔融加工获得高性能LL-DPE/Al导热复合材料.借助扫描电镜(SEM)、激光粒度分析仪等表征铝粉在基体中的微观形态和分散状态,同时研究LLDPE/Al复合材料的热导率、力学性能和热稳定性.结果表明:固相剪切碾磨过程中铝粉受磨盘挤压、拉伸、摩擦剪切等复合力场作用,由较小球形颗粒变为较大片状,同时在基体中均匀分散且界面结合得以增强,因此复合材料拥有更高的热导率、更好的力学性能和热稳定性.当铝粉填充质量分数为80%时,经固相剪切碾磨10次制备的复合材料热导率高达8.782W·m-1·K-1,拉伸强度和弯曲强度分别为33.00MPa和31.16MPa,初始分解温度比基体提高约13℃.

Solid state shear milling(S3 M)followed by melt mixing process was applied to prepare line-ar low-density polyethylene(LLDPE)/aluminum(Al)composites with high performance.The mor-phological change of Al particulates during S3 M was characterized by scanning electron microscope (SEM)and laser scattering particle analyzer.The thermal conductivity,mechanical properties and thermal stability of the LLDPE/Al composites were investigated.The results indicate that,under the complex combination of shearing,compression,stretching and friction actions,the spherical Al par-ticulates are squeezed into flakes during compounding with LLDPE by S3 M,and their dispersion and interfacial adhesion are improved as well,leading to significance properties enhancement of the resul-ting composites.At 80%(mass fraction)filler loading,thermal conductivity of the composite prepared by S3M for 10 cycles is as high as 8.782W·m-1 ·K-1 ,and the tensile strength and flexural strength respectively are 33.00MPa and 31.16MPa.Moreover,a significant increase of 13℃ in the onset de-composition temperature of degradation is observed,which suggests that the thermal stability of the composite prepared by S3 M is also improved.

参考文献

[1] 马传国;容敏智;章明秋.导热高分子复合材料的研究与应用[J].材料工程,2002(7):40-45.
[2] 范伟;冯刚;赵加伟.导热高分子复合材料的研究与应用进展[J].工程塑料应用,2011(12):101-104.
[3] Zhidong Han;Alberto Fina.Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review[J].Progress in Polymer Science,20117(7):914-944.
[4] 李侃社;王琪.导热高分子材料研究进展[J].功能材料,2002(2):136-141,144.
[5] Wenying Zhou.Thermal and Dielectric Properties of the Aluminum Particle Reinforced Linear Low-Density Polyethylene Composites[J].Polymer engineering and science,20115(5):917-924.
[6] 王锴;马海红;孙海燕;徐卫兵.抗静电导热PP/Al复合材料的制备与性能[J].塑料,2012(6):29-31,114.
[7] I.K. Bishay;S.L. Abd-El-Messieh;S.H. Mansour.Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminum powder[J].Materials & design,20111(1):62-68.
[8] Tekce HS;Kumlutas D;Tavman IH.Effect of particle shape on thermal conductivity of copper reinforced polymer composites[J].Journal of Reinforced Plastics and Composites,20071(1):113-121.
[9] 舒畅;谢光荣;曾鹏.不同球磨介质在片状铝粉制备过程中的作用研究[J].粉末冶金工业,2010(4):10-14.
[10] 黄兴;陈英红;王琪.固相剪切碾磨法制备共聚聚丙烯/纳米二氧化硅复合材料的界面性能[J].塑料,2009(5):5-7.
[11] W. Shao;Q. Wang;F. Wang.The cutting of multi-walled carbon nanotubes and their strong interfacial interaction with polyamide 6 in the solid state[J].Carbon: An International Journal Sponsored by the American Carbon Society,200613(13):2708-2714.
[12] 卢灿辉 .聚丙烯-铁-废旧橡胶的碾磨粉碎应力诱导效应及复合材料的研究[D].四川大学,2002.
[13] Huang Wu;Lawrence T. Drzal.High Thermally Conductive Graphite Nanoplatelet/ Polyetherimide Composite by Preooating: Effect of Percolation and Particle Size[J].Polymer Composites,201312(12):2148-2153.
[14] Krupa I;Novak I;Chodak I.Electrically and thermally conductive polyethylene/graphite composites and their mechanical properties[J].Synthetic Metals,20042/3(2/3):245-252.
[15] Hejun Wu;Xunwen Sun;Wei Zhang.Effect of solid-state shear milling on the physicochemical properties of thermally conductive low-temperature expandable graphite/low-density polyethylene composites[J].Composites, Part A. Applied science and manufacturing,2013:27-34.
[16] H. Palza;R. Vergara;P. Zapata.Composites of polypropylene melt blended with synthesized silica nanoparticles[J].Composites science and technology,20114(4):535-540.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%