欢迎登录材料期刊网

材料期刊网

高级检索

为研究高能超声处理制备纳米复合材料过程中纳米增强相在熔体中的分散过程,采用甘油为介质分别进行了数值模拟以及物理模拟。数值模拟结果表明,当超声作用于甘油中时,甘油中会形成中心-底面-壁面-中心的环形流动,变幅杆探头端面边缘附近甘油流体存在最大的流动速度,且随着超声功率的增大,流体运动速度增大。物理模拟实验结果显示,高能超声作用下甘油的实际运动行为与数值模拟结果相符合,存在环形流动;此外,高能超声作用下甘油中存在明显的空化效应;纳米晶须在超声作用下于甘油中分散良好,且随着超声功率的增大,达到充分分散所需时间变短。

High intensity ultrasonic processing is a good way to fabricate nano-composite. In order to study the dispersion process of nano-whiskers under high intensity ultrasonic, numerical and physical simulations of nano-whiskers' dispersion under high intensity ultrasonic were carried out by using glycerol as fluid medium. The numerical simulation results show that ultrasonic forces the fluid to flow along the center line-bottom-wall-center line route and flow velocity is the maximum near the probe tip edge. Besides, the flow velocity increases with the increase of ultrasonic power. The physical simulation results are in good agreement with the numerical simulation results. In addition, cavitation as well as convection is found in the glycerol during the ultrasonic processing; the nano-whiskers are dispersed well in the glycerol under ultrasonic, and the time for fully dispersion decreases with the increase of ultrasonic power.

参考文献

[1] ZHANG D, ZHANG G D, LI Z Q. The current state and trend of metal matrix composites[J]. Materials China, 2010, (4):1-7.
张荻, 张国定, 李志强.金属基复合材料的现状与发展趋势[J].中国材料进展, 2010, (4):1-7.
[2] HAO B, DUAN X J, CUI H, et al. Present status and expectation of metal matrix composites[J]. Materials Review, 2005, 19(7):64-68.
郝斌, 段先进, 崔华, 等.金属基复合材料的发展现状及展望[J].材料导报, 2005, 19(7):64-68.
[3] SEKHAR R, SINGH T P. Mechanisms in turning of metal matrix composites:a review[J]. Journal of Materials Research and Technology, 2014, 4(2):197-207.
[4] SARAVANAN R A, SURAPPA M K. Fabrication and characterization of pure magnesium-30 vol.% SiCP particle composite[J]. Materials Science and Engineering:A, 2000, 276:108-116.
[5] THAKUR S K, SRIVATSAN T S, GUPTA M. Synthesis and mechanical behavior of carbon nanotube-magnesium composites hybridized with nanoparticles of alumina[J]. Materials Science and Engineering:A, 2007, 466(1):32-37.
[6] HABIBNEJAD-KORAYEM M, MAHMUDI R, GHASEMI H M, et al. Tribological behavior of pure Mg and AZ31 magnesium alloy strengthened by Al2O3 nano-particles[J]. Wear, 2010, 268:405-412.
[7] HASSAN S F, GUPTA M. Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement[J]. Materials Science and Engineering:A, 2005, 392:163-168.
[8] YANG Y, LAN J, LI X C. Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy[J]. Materials Science and Engineering:A, 2004, 380(1):378-383.
[9] HU Z, YAN H, NIE Q, et al. Microstructure of SiC nanoparticles reinforced AZ61magnesium composites fabricated by ultrasonic method[J]. The Chinese Journal of Nonferrous Metals, 2009, (5):841-846.
胡志, 闫洪, 聂俏, 等.超声法制备纳米SiC颗粒增强AZ61镁基复合材料的显微组织[J].中国有色金属学报, 2009, 19(5):841-846.
[10] WANG Z H, WANG X D, ZHAO Y X, et al. SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic method[J]. Transactions of Nonferrous Metals Society of China, 2010, 20:1029-1032.
[11] LAN J, YANG Y, LI X C. Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method[J]. Materials Science and Engineering:A, 2004, 386(1):284-290.
[12] LIU S Y, LI W Z, JIA X Y, et al. Preparation and properties of nano-sized SiC particles reinforced AZ91D magnesium matrix composites[J]. Rare Metal Materials and Engineering, 2010, 39(1):134-138.
刘世英, 李文珍, 贾秀颖, 等.纳米SiC颗粒增强AZ91D复合材料的制备及性能[J].稀有金属材料与工程, 2010, 39(1):134-138.
[13] Glycerine Producers' Association. Physical Properties of Glycerine and Its Solutions[M]. New York:Glycerine Producers' Association, 1963. 3-24.
[14] VERSTEEG H K, MALALASEKERA W. An Introduction to Computational Fluid Dynamics:The Finite Volume Method[M]. Essex:Longman Scientific & Technical, 1995. 67-75.
[15] DU G H, ZHU Z M, XI X F. Fundamentals of Acoustics[M]. 3rd ed. Nanjing:Nanjing University Press, 2012.223-230.
杜功焕, 朱哲民, 袭秀芳.声学基础[M]. 3版.南京:南京大学出版社, 2012. 223-230.
[16] 李太宝.计算声学:声场的方程和计算方法[M].北京:科学出版社, 2005. 249-253.
[17] NOLTINGK B E, NEPPIRAS E A. Cavitation produced by ultrasonics[J]. Proceedings of the Physical Society:Section B, 1950, 63(9):674.
[18] DUBUS B, VANHILLE C, CAMPOS-POZUELO C, et al. On the physical origin of conical bubble structure under an ultrasonic horn[J]. Ultrasonics Sonochemistry, 2010, 17(5):810-818.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%