欢迎登录材料期刊网

材料期刊网

高级检索

采用磁控溅射法在玻璃基底上制备出一层特殊结构的Ti膜,该钛膜经过电化学阳极氧化和退火工艺处理,可直接在玻璃基底表面形成一层具有高光催化活性的透明TiO2纳米多孔涂层(简称TNP涂层)。利用XRD和SEM对TNP涂层的结构和形貌特征进行了表征。利用紫外可见分光光度计、接触角测试仪以及划痕测试仪对该涂层的透光率、浸润性、结合力进行了测试。最后,通过降解亚甲基蓝溶液对该涂层的光催化活性进行了评价。结果表明:制备的TNP涂层具有疏松多孔结构,退火后可形成锐钛矿相,透光率在可见光范围内达到80%以上,表面具有超亲水性(接触角< 6°),与玻璃基底间的结合力为2.9N;2h内对浓度为1×10-5mol/L的亚甲基蓝溶液降解率可达到94%,光催化反应速率常数为1.47h-1

The Ti film with special structure was deposited onto glass substrate by magnetron sputtering, then via the process of electrochemical anodization and annealing, a transparent TiO2 nanoporous coating (denoted as TNP) with high photocatalytic activity can be directly formed on glass substrate. The crystal structure of the TNP was detected by X-ray diffractometry (XRD) and the morphology of the coating was observed by scanning electron microscopy (SEM). The transmittance, wettability and adhesion of TNP were investigated by UV-Vis spectrophotometer, contact angle meter and scratch tester respectively. Finally, the photocatalytic activity of TNP was evaluated by degradation of methylene blue solution under UV illumination. The results show that the prepared TNP coating has a nanoporous structure and only anatase can be found after annealing, the transmittance of TNP coating can reach 80% or more in visible region, with a super hydrophilic surface (contact angle < 6°) and the adhesion strength between TNP coating and glass substrate is 2.9N; the degradation rate for methylene blue (C0=1×10-5mol/L) can reach 94% in 2 hours and the photocatalysis reaction rate constant is 1.47h-1.

参考文献

[1] TAVARES C J, VIEIRA J, REBOUTA L, et al. Reactive sputtering deposition of photocatalytic TiO2 thin films on glass substrates[J]. Materials Science and Engineering:B, 2007, 138(2):139-143.
[2] DUAN Q J, WANG B, WANG H P, et al. Research progress of the self-cleaning glass[J]. New Chemical Materials, 2009, 37(9):11-12.
段琼娟, 王彪, 王华平, 等.自清洁玻璃的研究进展[J].化工新型材料, 2009, 37(9):11-12.
[3] PAZ Y, LUO Z, RABENBERG L, et al. Photooxidative self-cleaning transparent titanium dioxide films on glass[J]. Journal of Materials Research, 2011, 10(11):2842-2848.
[4] HASHIMOTO K, IRIE H, FUJISHIMA A. TiO2 photocatalysis:a historical overview and future prospects[J]. Japanese Journal of Applied Physics, 2005, 44(12):8269-8285.
[5] BHATTACHARYYA A, KAWI S, RAY M B. Photocatalytic degradation of orangeⅡby TiO2 catalysts supported on adsorbents[J]. Catalysis Today, 2004, 98(3):431-439.
[6] FUKAHORI S, ICHIURA H, KITAOKA T, et al. Photocatalytic decomposition of bisphenol a in water using composite TiO2-zeolite sheets prepared by a papermaking technique[J]. Environmental Science & Technology, 2003, 37(5):1048-1051.
[7] XIANYU W X, PARK M K, LEE W I. Thickness effect in the photocatalytic activity of TiO2 thin films derived from sol-gel process[J]. Korean Journal of Chemical Engineering, 2001, 18(6):903-907.
[8] WU C Y, LEE Y L, LO Y S, et al. Thickness-dependent photocatalytic performance of nanocrystalline TiO2 thin films prepared by sol-gel spin coating[J]. Applied Surface Science, 2013, 280:737-744.
[9] MOR G K, VARGHESE O K, PAULOSE M, et al. Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films[J]. Advanced Functional Materials, 2005, 15(8):1291-1296.
[10] MACAK J M, ZLAMAL M, KRYSA J, et al. Self-organized TiO2 nanotube layers as highly efficient photocatalysts[J]. Small, 2007, 3(2):300-304.
[11] ZHUANG H F, LIN C J, LAI Y K, et al. Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity[J]. Environmental Science & Technology, 2007, 41(13):4735-4740.
[12] BISWAS S, SHAHJAHAN M, HOSSAIN M F, et al. Synthesis of thick TiO2 nanotube arrays on transparent substrate by anodization technique[J]. Electrochemistry Communications, 2010, 12(5):668-671.
[13] LIM S L, LIU Y, LI J, et al. Transparent titania nanotubes of micrometer length prepared by anodization of titanium thin film deposited on ITO[J]. Applied Surface Science, 2011, 257(15):6612-6617.
[14] JI Y, LIN K C, ZHENG H, et al. Solar-light photoamperometric and photocatalytic properties of quasi-transparent TiO2 nanoporous thin films[J]. ACS Appl Mater Interfaces, 2010, 2(11):3075-3082.
[15] BERGER S, GHICOV A, NAH Y C, et al. Transparent TiO2 nanotube electrodes via thin layer anodization:fabrication and use in electrochromic devices[J]. Langmuir, 2009, 25(9):4841-4844.
[16] MOR G K, SHANKAR K, PAULOSE M, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells[J]. Nano Lett, 2006, 6(2):215-218.
[17] SADEK A Z, ZHENG H, LATHAM K, et al. Anodization of Ti thin film deposited on ITO[J]. Langmuir, 2009, 25(1):509-514.
[18] PAULOSE M, SHANKAR K, VARGHESE O K, et al. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells[J]. Journal of Physics D:Applied Physics, 2006, 39(12):2498-2503.
[19] ZHENG H, SADEK A Z, BREEDON M, et al. Fast formation of thick and transparent titania nanotubular films from sputtered Ti[J]. Electrochemistry Communications, 2009, 11(6):1308-1311.
[20] BERGER S, HAHN R, ROY P, et al. Self-organized TiO2 nanotubes:factors affecting their morphology and properties[J]. Physica Status Solidi (b), 2010, 247(10):2424-2435.
[21] LI P, ZHAO K Y, GUO J, et al. Factors and mechanism for transition of TiO2 from nanopores to nanotubes[J]. Journal of Materials Engineering, 2014, (1):58-63.
李朋, 赵昆渝, 郭军, 等. TiO2纳米孔到纳米管结构转变的因素及其机理研究[J].材料工程, 2014, (1):58-63.
[22] LAI Y, SUN L, CHEN Y, et al. Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity[J]. Journal of The Electrochemical Society, 2006, 153(7):D123.
[23] AUGUSTYNSKI J. The role of the surface intermediates in the photoelectrochemical behaviour of anatase and rutile TiO2[J]. Electrochimica Acta, 1993, 38(1):43-46.
[24] LINSEBIGLER A L, LU G, YATES J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results[J]. Chemical Reviews, 1995, 95(3):735-758.
[25] ARBUJ S S, HAWALDAR R R, MULIK U P, et al. Preparation, characterization and photocatalytic activity of TiO2 towards methylene blue degradation[J]. Materials Science and Engineering:B, 2010, 168(1-3):90-94.
[26] ZHANG T, OYAMA T, AOSHIMA A, et al. Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2001, 140(2):163-172.
[27] ZHANG T, OYAMA T K, HORIKOSHI S, et al. Photocatalyzed N-demethylation and degradation of methylene blue in titania dispersions expos-ed to concentrated sunlight[J]. Solar Energy Materials and Solar Cells, 2002, 73(3):287-303.
[28] CELIK E, YILDIZ A Y, AZEM N F A, et al. Preparation and characterization of Fe2O3-TiO2 thin films on glass substrate for photocatalytic applications[J]. Materials Science and Engineering:B, 2006, 129:193-199.
[29] KELLY P J, BEEVERS C F, HENDERSON P S, et al. A comparison of the properties of titanium-based films produced by pulsed and continuous DC magnetron sputtering[J]. Surface and Coatings Technology, 2003, 174-175(3):795-800.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%