欢迎登录材料期刊网

材料期刊网

高级检索

通过考察P在纯锡中的作用,探讨微量P, P/Cu/Zn对Sn-Bi基合金焊料组织、拉伸性能、形变断裂的影响。结果显示在纯锡中添加1%(质量分数,下同)P,能够提高强度、刚度,降低塑性;但仅0.1%的P会恶化Sn-Bi合金的力学性能,这和P元素在金属基体内的存在形式以及基体组织有关。在锡基合金中,P以Sn-P合金的形式分布在相界或晶界上,限制载荷作用下金属的形变扩散与转移。因此在Sn-1P合金中,分布在β-Sn基体上的化合物,起强化作用;在Sn-Bi合金中,Sn-P化合物则加剧加载过程中的形变不匹配,成为裂纹萌生与扩展的薄弱环节,导致合金倾向于脆性断裂;最后,在加入微量P元素的基础上再进行Zn/Cu的合金化,可以改善Sn-Bi合金系列的微观组织,提高强度,增加合金最大流变应力。

Micro alloy metals P or P/Cu/Zn were added into Sn-Bi alloy to investigate the doping effects on microstructure, mechanical property, deformation fracture from the function of P in pure tin. The results show that doping 1%(mass fraction, same as below) P to pure tin can improve the strength and stiffness, decrease the plasticity. Only 0.1%P additive degenerates the mechanical property of Sn-Bi alloy, this is related to the existing form of element P in the base metal and the microstructure of the base metal. In Sn base alloy, P is distributed in phase or grain boundaries in the form of Sn-P intermetallic compounds (IMC), restricting the diffusion and shifting of deformation. Therefore, Sn-1P alloy, IMC distributed in beta-tin base plays a role of strengthening in pure tin doped situation, in Sn-Bi alloy instead, enhancing the deformation mismatch under loading becoming the weak spots where cracks may initiate and propagate, and leading to brittle fracture. Finally, addition of P/Zn/Cu simultaneously to Sn-Bi alloy, the doping can optimize the microstructure, improve the strength and enhance the ultimate tensile strength (UTS) of Sn-Bi alloys.

参考文献

[1] TONG X C. Thermal Interface Materials in Electronic Packaging, in Advanced Materials for Thermal Management of Electronic Packaging[M]. London:Springer, 2011.305-371.
[2] ZHANG L, XUE S B, GAO L L, et al. Development of Sn-Zn lead-free solders bearing alloying elements[J]. Journal of Materials Science:Materials in Electronics, 2010, 21(1):1-15.
[3] LIU C Z, KANG T Y, WEI W, et al. Effect of high intensity magnetic field on intermetallic compounds growth in SnBi/Cu microelectronic interconnect[J]. Journal of Alloys and Compounds, 2011, 509(33):8475-8477.
[4] CHEN S, ZHANG L, LIU J, et al. A reliability study of nanoparticles reinforced composite lead-free solder[J]. Mater Trans, 2010, 51(10):1720-1726.
[5] ZHU Q S, SONG H Y, LIU H Y, et al. Effect of Zn addition on microstructure of Sn-Bi joint[C]//Beijing:Proceedings of the 9th ICEPT-HDP, 2009:1043-1046.
[6] DUTCHAK Y I, QSIPENKO V P, PANASYUK P V. Thermal conductivity of Sn-Bi alloys in the solid and liquid states[J]. Soviet Physics Journal, 1968, 11(10):145-147.
[7] ZANG L, YUAN Z, ZHU Y, et al. Spreading process and interfacial characteristic of Sn-17Bi-0.5Cu/Ni at temperatures ranging from 523 K to 673 K[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2012, 414(11):57-65.
[8] HE P, LU X C, ZHANG B B, et al.Effect of alloy element on microstructure and impact toughness of Sn-57Bi lead-free solders[J].Journal of Materials Engineering, 2010, (10):13-17, 31.
何鹏, 吕晓春, 张斌斌, 等.合金元素对Sn-57Bi无铅钎料组织及韧性的影响[J].材料工程, 2010, (10):13-17, 31
[9] WANG X J, ZHU Q S, LIU B, et al. Effect of doping Al on the liquid oxidation of Sn-Bi-Zn solder[J]. J Mater Sci:Mater Electron, 2014, 25(5):2297-2304.
[10] XIAN A P, GONG G L. Surface oxidation of molten Sn-0.07 wt.% P in air at 280℃[J]. Journal of Materials Research, 2008, 23(6):1532-1536.
[11] FU X, ZHOU J, SUN Y, et al. Effect of phosphorus on microstructure and properties of Sn-8Zn-3Bi lead-free solder[J]. Journal of Southeast University(Natural Science Edition), 2006, 36(5):832-835.
[12] GLAZER J. Metallurgy of low temperature of Pb-free solders for electronic assemble[J]. International Materials Reviews, 1995, 40(2):65-93.
[13] KILINSKI T J, LESNIAK J R, SANDOR B I. Solder Joint Reliability:Theory and Application[M]. New York:Springer, 1991.384-405.
[14] LAI Y S, YANG P F, YAH C L. Experimental studies of board-level reliability of chip-scale packages subjected to JEDEC drop test condition[J]. Microelectronics Reliability, 2006, 46(2-4):645-650.
[15] SUH D, KIM D W, LIU P, et al. Effects of Ag content on fracture resistance of Sn-Ag-Cu lead-free solders under high-strain rate conditions[J]. Materials Science and Engineering:A, 2007, 460-461(15):595-603.
[16] KIM H, ZHANG M, KUMAR C M, et al. Improved drop reliability performance with lead free solders of low Ag content and their failure modes[C]//Reno NV:57th Electronic Components and Technology Conference, 2007:962-967.
[17] ABTEW M, SELVADURAY G. Lead-free solders in microelectronics[J]. Materials Science & Engineering:Reports, 2000, 27(5-6):95-141.
[18] GLAZER J. Metallurgy of low temperature of Pb-free solders for electronic assemble[J]. International Materials Reviews, 1995, 40(2):65-93.
[19] WANG F, GAO F, QIAN Y. Depressing effect of 0.2 wt.% Zn addition into Sn-3.0Ag-0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging[J]. J Electron Mater, 2006, 35(10):1818-1824.
[20] WANG X J, WANG Y L, WANG F J, et al. Effects of Zn, Zn-Al and Zn-P additions on the tensile properties of Sn-Bi solder[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(6):1159-1164.
[21] LI G, SHI Y, HAO H, et al. Effect of phosphorus element on the comprehensive properties of Sn-Cu lead-free solder[J]. J Alloys Compd, 2010, 491(1-2):382-385.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%