利用电子背散射衍射(EBSD )实验分析了马氏体组织的微区弹性刚度分布,并在此基础上建立应力‐氢交互作用的耦合有限元模型,研究马氏体组织的各向异性对微区应力和氢分布的影响。结果表明:相邻Block板条束之间的取向差互成60°,在同一受力方向上不同Block板条束具有不同的弹性刚度,从而引发组织间的微区应力和氢呈不均匀分布, Block板条束是表征微区应力的组织单元。Block板条束弹性刚度梯度和组织尺寸决定了组织间的应力集中,而应力集中又影响了氢的分布。弹性刚度梯度高和板条束尺寸大的Block组织单元应力集中较为严重,并富集高浓度的氢,最终引发氢致开裂。上述模拟结果与氢脆断口的微观断裂形貌和氢脆裂纹的EBSD分析结果相符。
Elastic stiffness distribution of martensite microstructure was analyzed by using Electron Back Scatter Diffraction (EBSD ) experiment , based on w hich the coupled finite element model of stress‐hydrogen interaction was established to study the influence of martensitic microstructure anisot‐ropy on the micro local stress and hydrogen distribution .The results show that misorientation be‐tween adjacent Block Laths is 60° ,and different Block Laths have different elastic stiffness in the same loading direction ,w hich resulted in the heterogeneous distribution of micro stress and hydrogen ,and micro stress can be characterized by microstructure element of Block Lath .Elastic stiffness gradient and Block size play a significant role in stress concentration among microstructures ,and w hile stress concentration can affect hydrogen distribution .High elastic stiffness gradient and large size of Block Lath cause high stress concentration ,accumulate high concentration of hydrogen ,w hich initiate crack of hydrogen embrittlement in the end .The above results are consistent with micro fracture morpholo‐gy and EBSD experiment on crack region .
参考文献
[1] | 李永德;徐娜;郭卫民;吴晓峰;时军波;刘树伟.高压气相热充氢对SUJ2轴承钢超高周疲劳行为的影响[J].材料工程,2014(2):87-93,98. |
[2] | Akihide Nagao;Shigeru Kuramoto;Koji Ichitani.Visualization of hydrogen transport in high strength steels affected by stress fields and hydrogen trapping[J].Scripta materialia,200110(10):1227-1232. |
[3] | 郭昀静;王春芳;李建锡;王毛球.利用TDS研究二次硬化钢中氢的扩散行为[J].航空材料学报,2012(3):5-9. |
[4] | Wu-Shou Zhang;Min-Qiang Hou;He-Yi Wang;Yi-Bei Fu.Numerical simulation of diffusivity of hydrogen in thin tubular metallic membranes affected by self-stresses[J].International journal of hydrogen energy,200411(11):1165-1172. |
[5] | Y. Kimura;Y. Sakai;T. Hara;A. Belyakov;K. Tsuzaki.Hydrogen induced delayed fracture of ultrafine grained 0.6% O steel with dispersed oxide particles[J].Scripta materialia,200311(11):1111-1116. |
[6] | D. HARDIE;SU'E LIU.THE EFFECT OF STRESS CONCENTRATION ON HYDROGEN EMBRITTLEMENT OF A LOW ALLOY STEEL[J].Corrosion Science,19965(5):721-733. |
[7] | Maoqiu Wang;Eiji Akiyama;Kaneaki Tsuzaki.Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,20068(8):2189-2202. |
[8] | Afrooz Barnoush;Horst Vehoff.Recent developments in the study of hydrogen embrittlement: Hydrogen effect on dislocation nucleation[J].Acta materialia,201016(16):5274-5285. |
[9] | T. Neeraj;R. Srinivasan;Ju Li.Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding[J].Acta materialia,201213/14(13/14):5160-5171. |
[10] | V. Venegas;F. Caleyo;J. L. Gonzalez.EBSD Study of Hydrogen-Induced Cracking in API-5L-X46 Pipeline Steel[J].Scripta materialia,20052(2):147-152. |
[11] | Lim, H.;Lee, M.G.;Kim, J.H.;Adams, B.L.;Wagoner, R.H..Simulation of polycrystal deformation with grain and grain boundary effects[J].International Journal of Plasticity,20119(9):1328-1354. |
[12] | Tung Phan Van;Katja Jochen;Thomas Bohlke.Simulation of sheet metal forming incorporating EBSD data[J].Journal of Materials Processing Technology,201212(12):2659-2668. |
[13] | Hardin, T.J.;Adams, B.L.;Fullwood, D.T.;Wagoner, R.H.;Homer, E.R..Estimation of the full Nye's tensor and its gradients by micro-mechanical stereo-inference using EBSD dislocation microscopy[J].International Journal of Plasticity,2013:146-157. |
[14] | J.Lufrano;P.Sofronis.Enhanced hydrogen concentrations ahead of rounded notches and cracks-competition between plastic strain and hydrostatic stress[J].Acta materialia,19985(5):1519-1526. |
[15] | T. Zakroczymski;E. Owczarek.Electrochemical investigation of hydrogen absorption in a duplex stainless steel[J].Acta materialia,200210(10):2701-2713. |
[16] | Akihide Nagao;Cynthia D. Smith;Mohsen Dadfarnia.The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel[J].Acta materialia,201213/14(13/14):5182-5189. |
[17] | S. Morito;H. Tanaka;R. Konishi.The morphology and crystallography of lath martensite in Fe-C alloys[J].Acta materialia,20036(6):1789-1799. |
[18] | Kitahara H;Ueji R;Tsuji N;Minamino Y.Crystallographic features of lath martensite in low-carbon steel[J].Acta materialia,20065(5):1279-1288. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%