非连续增强钛基复合材料(DRTMCs)作为轻质、耐热、高强、可变形加工材料的代表在航空航天领域具有广泛的应用前景.新一代超高速飞行器及高推比发动机使D RTMCs的研究再次受到关注.综述DRTMCs的制备方法、增强相与基体选择、增强相分布构型设计、后续变形与热处理、力学性能的研究进展,指出研究中存在的问题,并提出未来发展方向.进一步发展应结合应用背景分别制备高弹、高耐磨、高强韧、耐高温等系列具有不同性能特点的DRTMCs,并制备更耐磨、更抗氧化的梯度表面,以提高其使用寿命.结合3D打印技术开展DRTMCs微小构件、形状复杂构件的制备以及增强相空间分布状态调控研究.进而采用合理的焊接技术,实现大尺寸、形状复杂、异种材料等构件焊接,从而推动DRTMCs长远发展.
参考文献
[1] | TJONG S C,MAI Y W .Processing-structure-property aspects of particulate and whisker-reinforced titanium matrix composites[J].Composite Science and Technology,2008,68:583-601.,2008. |
[2] | MORSI K,PATEL V V .Processing and properties of titanium-titanium boride (TiBw) matrix composites:a review[J].Journal of Materials Science,2007,42(6):2037-2047.3.,2007. |
[3] | 毛小南,于兰兰.非连续增强钛基复合材料研究新进展[J].中国材料进展,2010(05):18-24. |
[4] | 吕维洁.原位自生钛基复合材料研究综述[J].中国材料进展,2010(04):41-48. |
[5] | 张荻,张国定,李志强.金属基复合材料的现状与发展趋势[J].中国材料进展,2010(04):1-7. |
[6] | HUANG L J,GENG L,LI A B,et al .In situ TiBw/Ti-6Al-4V composites with novel reinforcement architecture fabricated by reaction hot pressing[J].Scripta Materialia,2009,60(11):996-999.,2009. |
[7] | LU W J,ZHANG D,ZHANG X N,et al .Microstructure and tensile properties of in situ (TiB + TiC)/Ti6242 (TiB:TiC =1:1) composites prepared by common casting technique[J].Material Science and Engineering:A,2001,311 |
[8] | ZHANG C J,KONG F T,XIAO S L,et al .Evolution of microstructure and tensile properties of in situ titanium matrix composites with volume fraction of (TiB + TiC) reinforcements[J].Materials Science and Engineering:A,2012,548 |
[9] | HUANG L J,WANG S,DONG Y S,et al .Tailoring a novel network reinforcement architecture exploiting superior tensile properties of in situ TiBw/Ti composites[J].Materials Science and Engineering:A,2012,545 |
[10] | HUANG L J,WANG S,GENG L,et al .Low volume frac-tion in situ (Ti5 Si3 + Ti2 C)/Ti hybrid composites with network microstructure fabricated by reaction hot pressing of Ti-SiC system[J].Composites Science and Technology,2013,82 |
[11] | HUANGLJ,GENGL,PENGH X,etal .Room temperature tensile fracture characteristics of in situ TiBw/Ti6Al4V composites with a quasi-continuous network architecture[J].Scripta Materialia,2011,64(9):844-847.,2011. |
[12] | HUANG L J,GENG L,WANG B,et al .Effects of extrusion and heat treatment on the microstructure and tensile properties of in situ TiBw/Ti6Al4V composite with a network architecture[J].Composites:Part A,2012,43(3):486-491.,2012. |
[13] | 黄陆军,唐骜,戎旭东,等 .热轧制变形对网状结构TiBw/Ti6 Al4V组织与性能的影响[J].航空材料学报,2013,33(2):8-12.(HUANG L J,TANG A,RONG X D,et al.Effects of hot rolling deformation on microstructure and mechanical properties of TiBw/Ti6Al4V composites with network microstructure[J].Journal of Aeronautical Materials,2013,33(2):8-12.),2013. |
[14] | KIM Y J,CHUANG H,KANG S J L .In situ formation of titanium carbide in titanium powder compacts by gas-solid reaction[J].Composites:Part A,2001,32(5):731-738.,2001. |
[15] | KIM Y J,CHUNG H,KANG S J .Processing and mechanical properties of Ti-6Al-4V/TiC in situ composite fabricated by gas-solid reaction[J].Materials Science and Engineering:A,2002,333:343-350.,2002. |
[16] | FAN Z,MIODOWNIK A P .Microstructural evolution in rapidly solidified Ti-7.5Mn-0.5B alloy[J].Acta Materialia,1996,44(1):93-110.,1996. |
[17] | WANG F,MEI J,WU X H .Direct laser fabrication of Ti6Al4V/TiB[J].Journal of Materials Processing Technology,2008,195:321-326.,2008. |
[18] | SEN I,TAMIRISAKANDALA S,MIRACLE D B,et al .Microstructural effects on the mechanical behavior of Bbodified Ti-6Al-4V alloys[J].Acta Materialia,2007,55(15):4983-4993.,2007. |
[19] | TJONG S C,MA Z Y .Microstructural and mechanical characteristics of in-situ metal matrix composites[J].Materials Science and Engineering:R,2000,29 |
[20] | 肖代红,黄伯云.原位合成钛基复合材料的最新进展[J].粉末冶金技术,2008(03):217-223,229. |
[21] | GORSSE S,MIRACLE D B .Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements[J].Acta Materialia,2003,51(9):2427-2442.,2003. |
[22] | WEI S,ZHANG Z H,WANG F C,et al .Effect of Ti content and sintering temperature on the microstructures and mechanical properties of TiB reinforced titanium composites synthesized by SPS process[J].Materials Science and Engineering:A,2013,560 |
[23] | YANG Z F,LV W J,ZHAO L,et al .Microstructure and mechanical property of in situ synthesized multiple-reinforced (TiB + TiC + La2 O3)/Ti composites[J].Journal of Alloys and Compounds,2008,455:210-214.,2008. |
[24] | NI DR,GENG L,ZHANG J,et al .TEM characterization of symbiosis structure of in situ TiC and TiB prepared by reactive processing of Ti-B4 C[J].Materials Letters,2008,62 |
[25] | NI D R,GENG L,ZHANG J,et al .Effect of B4 C particle size on microstructure of in situ titanium matrix composites prepared by reactive hot processing of Ti-B4 C system[J].Scripta Materialia,2006,55 |
[26] | HUANG L J,GENGL,PENG H X,et al .High temperature tensile properties of in situ TiBw/Ti6Al4V composites with a novel network reinforcement architecture[J].Materials Science and Engineering:A,2012,534(1):688-692.,2012. |
[27] | HUANG L J,GENG L,PENG H X,et al .Effects of sintering parameters on the microstructure and tensile properties of in situ TiBw/Ti6Al4V composites with a novel network architecture[J].Materials and Design,2011,32(6):3347-3353.,2011. |
[28] | SAHAY S S,RAVICHANDRAN K S,ATRI R,et al .Evolution of microstructure and phases in in situ processed Ti-TiB composites containing high volume fractions of TiB whiskers[J].Journal of Material Research,1999,14(11):4214-4223.,1999. |
[29] | ATRI R,RAVICHANDRAN K S,JHA S K .Elastic properties of in-situ processed Ti-TiB composites measured by impulse excitation of vibration[J].Materials Science and Engineering:A,1999,271:150-159.,1999. |
[30] | MADTHA S,LEE C,CHANDRAN K S R .Physical and mechanical properties of nanostructured titanium boride (TiB) ceramic[J].Journal of American Ceramic Society,2008,91(4):1319-1321.,2008. |
[31] | PANDA K B,RAVI CHANDRAN K S .First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory[J].Acta Materialia,2006,54(6):1641-1657.,2006. |
[32] | 姚强,邢辉,孟丽君,孙坚.TiB2和TiB弹性性质的理论计算[J].中国有色金属学报,2007(08):1297-1301. |
[33] | CAO G J,GENG L,NAKA M .Elastic properties of titanium monoboride measured by nanoindentation[J].Journal of American Ceramic Society,2006,89(12):3836-3838.,2006. |
[34] | FAN Z,MIODOWNIK A P,CHANDRASEKARAN L,et al .The Young's moduli of in-situ Ti/TiB composites obtained by rapid solidification processing[J].Journal of Materials Science,1994,29(4):1127-1134.,1994. |
[35] | TIKEKAR N M,RAVI CHANDRANA K S,SANDERS A .Nature of growth of dual titanium boride layers with nanostructured titanium boride whiskers on the surface of titanium[J].Scripta Materialia,2007,57 |
[36] | BOEHLERT C J,TAMIRISAKANDALA S,CURTIN WA,et al .Assessment of in situ TiB Whisker tensile strength and optimization of TiB-reinforced titanium alloy design[J].Scripta Materialia,2009,61 |
[37] | ZHANG E L,ZENG S Y,WANG B .Preparation and microstructure of in situ particle reinforced titanium matrix alloy[J].Journal of Materials Processing Technology,2002,125 |
[38] | 张二林,金云学,曾松岩,朱兆军,康强,李东.自生TiC增强钛基复合材料的微观组织[J].材料研究学报,2000(05):524-530. |
[39] | KUZUMAKI T,UJIIE O,ICHINOSE H,et al .Mechanical characteristics and preparation of carbon nanotube fiberreinforced Ti composite[J].Advanced Engineering Materials,2000,2 |
[40] | KONDOH K,THRERUJIRAPAPONG T,IMAI H,et al .Characteristics of powder metallurgy pure titanium matrixcomposite reinforced with multi-wall carbon nanotubes[J].Composites Science and Technology,2009,69:1077-1081.,2009. |
[41] | LI S,SUN B,IMAI H,et al .Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite[J].Composites:Part A,2013,48 |
[42] | KONDOH K,THRERUJIRAPAPONG T,UMEDA J,et al .High-temperature properties of extruded titanium composites fabricated from carbon nanotubes coated titanium powder by spark plasma sintering and hot extrusion[J].Composites Science and Technology,2012,72(11):1291-1297.,2012. |
[43] | FENG X,SUI J,FENGY,etal .Preparation and elevated temperature compressive properties of multi-walled carbon nanotube reinforced Ti composites[J].Materials Science and Engineering:A,2010,527(6):1586-1589.,2010. |
[44] | LI S,SUN B,IMAI H,et al .Powder metallurgy Ti-TiC metal matrix composites prepared by in situ reactive processing of Ti-VGCFs system[J].Carbon,2013,61 |
[45] | TAMIRISAKANDALA S,BHAT R B,TILEY J S,et al .Grain refinement of cast titanium alloys via trace boron addition[J].Scripta Materialia,2005,53(12):1421-1426.,2005. |
[46] | MA F C,LV W J,QIN J N,et al .Hot deformation behavior of in situ synthesized Ti-1100 composite reinforced with 5 vol.% TiC particles[J].Materials Letters,2006,60(3):400-405.,2006. |
[47] | LIU D,ZHANG S Q,LI A,et al .High temperature mechanical properties of a laser melting deposited TiC/TA15titanium matrix composite[J].Journal of Alloys and Compounds,2010,496 |
[48] | ZHANG C,KONG F,XIAO S,et al .Evolution of microstructural characteristic and tensile properties during preparation of TiB/Ti composite sheet[J].Materials and Design,2012,36 |
[49] | FENG H B,ZHOU Y,JIA D C,et al .Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti-FeMo-B prepared by spark plasma sintering[J].Composites Science and Technology,2004,64 |
[50] | NI D R,GENG L,ZHANG J,et al .Fabrication and tensile properties of in situ TiBw and TiCp hybrid-reinforced titanium matrix composites based on Ti-B4 C-C[J].Materials Science and Engineering:A,2008,478:291-296.,2008. |
[51] | HUANG L J,YANG F Y,HU H T,et al .TiB whiskers reinforced high temperature titanium Ti60 alloy composites with novel network microstructure[J].Materials and Design,2013,51 |
[52] | PANDA K B,RAVI CHANDRAN K S .Synthesis of ductile titanium-titanium boride (Ti-TiB) composites with a beta-titanium matrix:the nature of TiB formation and composite properties[J].Metallurgical and Materials Transactions:A,2003,34 |
[53] | DU Z X,XIAO S L,WANG P X,et al .Effects of trace TiB and TiC on microstructure and tensile properties of βtitanium alloy[J].Materials Science and Engineering:A,2014,596 |
[54] | GUO X L,WANG L Q,WANG M M,et al .Effects of degree of deformation on the microstructure,mechanical properties and texture of hybrid-reinforced titanium matrix composites[J].Acta Materialia,2012,60 |
[55] | HUANG L J,XU H Y,WANG B,et al .Effects of heat treatment parameters on the microstructure and mechanical properties of in situ TiBw/Ti6Al4V composite with a network architecture[J].Materials and Design,2012,36 |
[56] | PENG H X,FAN Z,MUDHER D S,et al .Microstructures and mechanical properties of engineered short fibre reinforced aluminium matrix composites[J].Materials Science and Engineering:A,2002,335 |
[57] | PATEL V V,EL-DESOUKY A,GARAY J E,et al .Pressure-less and current-activated pressure-assisted sintering of titanium dual matrix composites:effect of reinforcement particle size[J].Materials Science and Engineering:A,2009,507 |
[58] | QIN S,ZHANG G .Preparation of high fracture performance SiCp-6061Al/6061Al composite[J].Materials Science and Engineering:A,2000,279 |
[59] | HASHIN Z,SHTRIKMAN S .A variational approach to the theory of the elastic behaviour of multiphase materials[J].Journal of the Mechanics and Physics of Solids,1963,11 |
[60] | YIN L.Composites Microstructures with Tailored Phase Contiguity and Spatial Distribution[D].Bristol:University of Bristol,2009:2-25.,2009. |
[61] | LU K .The future of metals[J].Science,2010,328 |
[62] | GUO Y,QIAO G,JIAN W,et al .Microstructure and tensile behavior of Cu-Al multi-layered composites prepared by plasma activated sintering[J].Materials Science and Engineering:A,2010,527 |
[63] | XING H W,CAO X M,HU W P,et al .Interfacial reactions in 3D-SiC network reinforced Cu-matrix composites prepared by squeeze casting[J].Material Letters,2005,59 |
[64] | ZHAO L Z,ZHAO M J,NA L,et al.Microstructure of nickel foam/Mg double interpenetrating composites[J].Transactions of Nonferrous Metals Society of China,2010(Suppl),20:463-466.,2010. |
[65] | HUANG L J,GENG L,PENG H X.Microstructurally inhomogeneous composites:Is a homogeneous reinforcement distribution optimal?[J].Progress in Materials Science.2014 (submitted),2014. |
[66] | HUANG L J,GENG L,WANG B,et al .Effects of volume fraction on the microstructure and tensile properties of in situ TiBw/Ti6 Al4V composites with novel network microstructure[J].Materials and Design,2013,45 |
[67] | HULL D,CLYNE T W.An Introduction to Composite Materials[M].Second Edition.London:Cambridge University Press.1996:340-343.,1996. |
[68] | HUANG L,CHENY,KONGF,et al .Directrolling of Ti-6Al-4V-0.1B alloy sheets in the β phase region[J].Materials Science and Engineering:A,2013,577 |
[69] | LIU B X,HUANG L J,GENG L,et al .Gradient grain distribution and enhanced properties of novel laminated Ti-TiBw/Ti composites by reaction hot-pressing[J].Materials Science and Engineering:A,2014,595 |
[70] | LIU X,HUANG L J,GENG L,et al .Microstructure and tensile behavior of novel laminated Ti-TiBw/Ti matrix composite by reaction hot pressing[J].Materials Science and Engineering:A,2013,583 |
[71] | LIU X,HUANG L J,GENG L,et al .Fabrication and superior ductility of laminated Ti-TiBw/Ti composites by diffusion welding[J].Journal of Alloys and Compounds,2014,602(25):187-192.,2014. |
[72] | TANAKA Y,YANG J M,LIU Y F,et al .Characterization of nanoscale deformation in a discontinuously reinforced titanium composite using AFM and nanolithography[J].Scripta Materialia,2007,56(3):209-212.,2007. |
[73] | HUANG L J,XU H Y,WANG B,et al .Effects of heat treatment parameters on the microstructure and mechanical properties of in situ TiBw/Ti6Al4V composite with a network architecture[J].Materials and Design,2012,36 |
[74] | HUANG L J,GENG L,XU H Y,et al .In situ TiC particles reinforced Ti6Al4V matrix composite with a network reinforcement architecture[J].Materials Science and Engineering:A,2011,528(6):2859-2862.,2011. |
[75] | WANG B,HUANG L J,GENG L .Effects of heat treatments on the microstructure and mechanical properties of as-extruded TiBw/Ti6Al4V composites[J].Materials Science and Engineering:A,2012,558 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%