欢迎登录材料期刊网

材料期刊网

高级检索

将基于小裂纹理论的疲劳全寿命预测方法应用于恒幅载荷作用下的高温合金GH4169材料的全寿命预测.采用单边缺口试样研究了该合金在室温下应力比为0.1和0.5的自然萌生的小裂纹的起始和扩展行为,结果表明疲劳小裂纹均起始于试样表面夹杂,并且小裂纹扩展寿命占疲劳全寿命的大部分比例.在裂纹扩展速率da/dN低于10-5mm/cycle的区域,表现出明显的小裂纹效应.基于小裂纹和长裂纹的扩展数据,利用Newman裂纹闭合模型,获得了裂纹扩展的da/dN-AKeff基线数据.对高周疲劳试样的断口形貌进行观察,得到以材料夹杂尺寸作为初始裂纹尺寸的值ai.根据初始裂纹尺寸和裂纹扩展的基线数据,利用FASTRAN软件,对GH4169合金的疲劳全寿命进行预测,并用高周疲劳试验S-N数据对预测结果进行评价,预测与试验结果能够很好地吻合.

参考文献

[1] NEWMAN J C;WU X R;VENNERI S L et al.Small crack growth and fatigue life predictions for high-strength aluminum alloys:part Ⅱ:crack closure and fatigue analyses[J].Fatigue and fracture of engineering materials and structures,2000,23:59-72.
[2] 吴学仁,刘建中.基于小裂纹理论的航空材料疲劳全寿命预测[J].航空学报,2006(02):219-226.
[3] S. A. Barter;L. Molent;R. J. H. Wanhill.Typical fatigue-initiating discontinuities in metallic aircraft structures[J].International Journal of Fatigue,2012:11-22.
[4] Yukitaka Murakami.Material defects as the basis of fatigue design[J].International Journal of Fatigue,2012:2-10.
[5] Michael Besel;Angelika Brueckner-Foit;Yasuko Motoyashiki;Oliver Schaefer .Lifetime distribution of notched components containing void defects[J].Archive of Applied Mechanics,2006(11/12):645-653.
[6] P. J. Laz;B. M. Hillberry .Fatigue life prediction from inclusion initiated cracks[J].International Journal of Fatigue,1998(4):263-270.
[7] 周晓明,汪武祥,王旭青,唐定中,颜鸣皋.SiO2非金属夹杂物对镍基粉末高温合金微观力学行为的影响[J].航空材料学报,2006(03):1-6.
[8] 齐欢.INCONEL 718(GH4169)高温合金的发展与工艺[J].材料工程,2012(08):92-100.
[9] 黄嘉,季英萍,秦丽晔,吴素君.GH4169合金惯性摩擦焊焊接接头疲劳裂纹扩展性能[J].航空材料学报,2013(06):45-50.
[10] Connolley T.;Reed PAS.;Starink M. .Short crack initiation and growth at 600 degrees C in notched specimens of Inconel718[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):139-154.
[11] Xinyue Huang;Huichen Yu;Manqiong Xu;Yuxin Zhao.Experimental investigation on microcrack initiation process in nickel-based superalloy DAGH4169[J].International Journal of Fatigue,2012:153-164.
[12] NEWMAN J C .FASTRAN-Ⅱ-a fatigue crack growth structural analysis program[R].NASA TM 104159,1992.
[13] NEWMAN J C.A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading[A].,1989:53-84.
[14] NEWMAN J C .A nonlinear fracture mechanics approach to the growth of small cracks.AGRAD-CP-328[R].,1983.
[15] NEWMAN J C .A crack closure model for predicting fatigue crack growth under air craft spectrum loading.ASTM STP 748[R].,1981.
[16] NEWMAN J C .A crack opening stress equation for fatigue crack growth[J].International Journal of Fracture,1984,24:R131-R135.
[17] WUX R;NEWMAN J C;ZHAO W et al.Small crack growth and fatigue life predictions for high-strength aluminum alloys:part Ⅰ:experimental and fracture mechanics analysis[J].Fatigue and fracture of engineering materials and structures,1998,21:1289-1306.
[18] U. Zerbst;M. Madia;D. Hellmann.An analytical fracture mechanics model for estimation of S-N curves of metallic alloys containing large second phase particles[J].Engineering Fracture Mechanics,2012:115-134.
[19] MURAKAMI Y.Metal fatigue:effects of small defects and nonmetallic inclusions[M].Oxford:Elsevier Science Ltd,2002
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%