欢迎登录材料期刊网

材料期刊网

高级检索

为研究摩擦在超塑成形中对零件壁厚分布的影响,以 TC4钛合金负角度法兰盘零件为背景,采用 MSC. MARC 有限元数值模拟分析了单面正向成形下模变摩擦和正反向成形上模变摩擦对零件壁厚的影响.通过方差分析和极差分析研究了正反向成形上模不同区域摩擦的变化对最小壁厚和壁厚均匀性的影响。结果表明:单面正向成形中,摩擦越小,负角度壁壁厚减薄越大,而正角度壁壁厚确呈相反的趋势;正反向成形中,当下模摩擦固定时,随着上模摩擦系数的增大,实际零件的最小壁厚相应增大;正反向成形上模不同区域摩擦的变化,对零件的最小壁厚和壁厚分布产生不同的影响;反向成形过程中板料先接触模具的部位对零件的壁厚影响较大。

In order to study the influence of the friction on the thickness distribution of part in superplastic forming,based on TC4 neg-ative angle complex parts,the influence of low-die in single-direct SPF and up-die in direct-reverse SPF on thickness distribution was analyzed with MSC.and MARC.The influence of friction changing in different areas of up-die in direct-reverse SPF on the minimum thickness and the thickness distribution were analyzed with ANOVA and range analysis.The results show that the smaller of friction, the greater thinning of the negative wall thickness while the thickness of positive angle wall was opposite.In direct-reverse SPF,when the friction of low-die is fixed,as the friction coefficient of up-die increases,the minimum thickness of actual part increases according-ly.There are different effects on minimum thickness and thickness distribution as the friction in different areas of up-die in direct-re-verse SPF changes.The thickness effect of the part is greater while the sheet contacts the die earlier.

参考文献

[1] 张凌云,祁桂根.铝锂合金在航空业的应用及SPF/DB工艺进展[J].金属成形工艺,2001(03):1-3.
[2] BARNES A J .Superplastic forming 40 years and still grow-ing[J].Journal of Materials Engineering and Performance,2007,16(4):440-454.
[3] 宋西平.钛合金在汽车零件上的应用现状及研发趋势[J].钛工业进展,2007(05):9-13.
[4] 赵祖德,徐雪峰,童国权,朱世凤,黄少东,曹洋.5083铝合金壳体超塑胀形加载曲线优化控制[J].材料科学与工艺,2008(02):228-231.
[5] 金明月 .细晶TC4钛合金高温拉伸变形行为研究[D].哈尔滨工业大学,2006.
[6] 罗应兵 .轻合金超塑性变形机理与成形工艺研究[D].上海交通大学,2007.
[7] 朱桂双 .不同晶粒尺寸TC4钛合金高温变形行为研究[D].哈尔滨工业大学,2007.
[8] 邵宗科,黄重国,雷鹍,袁清华.TC4钛合金负角度零件正反向超塑成形[J].塑性工程学报,2012(02):114-118,123.
[9] 张凌云.改善超塑性气压胀形零件壁厚分布的工艺方法[J].金属成形工艺,2002(04):40-42.
[10] ALBAKRI M I;KHRAISHEH M K.Optimization of su-perplastic forming;effects of interfacial friction on variable strain rate forming paths[J].Advances in Sustainable Manufacturing,2011:121-126.
[11] HARRISON N R;LUCKEY S G;FRIEDMAN P A.Influence of friction and die geometry on simulation of su-perplastic forming of al-mg alloys[J].Advances in Super-plasticity and Superplastic Forming Symposium,2004:301-309.
[12] HAMBLI R;KOBI S.Optimization of superplastic forming processes using the finite element method[A].,2002:5.
[13] Denis Garriga-Majo;Robin J. Paterson;Richard V. Curtis;Rajab Said;Richard D. Wood;Javier Bonet .Optimisation of the superplastic forming of a dental implant for bone augmentation using finite element simulations[J].Dental materials,2004(5):409-418.
[14] Y. -M. Hwang;H. S. Lay;J. C. Huang .Study on superplastic blow-forming of 8090 Al-Li sheets in an ellip-cylindrical closed-die[J].International Journal of Machine Tools & Manufacture: Design, research and application,2002(12):1363-1372.
[15] Firas S. Jarrar;Louis G. Hector, Jr.;Marwan K. Khraisheh;Allan F. Bower .New approach to gas pressure profile prediction for high temperature AA5083 sheet forming[J].Journal of Materials Processing Technology,2010(6/7):825-834.
[16] Mohammad I. Albakri;Firas S. Jarrar;Marwan K. Khraisheh .Effects of Interfacial Friction Distribution on the Superplastic Forming of AA5083[J].Journal of engineering materials and technology,2011(3):031008:1-031008:6.
[17] 蒋少松 .TC4钛合金超塑成形精度控制[D].哈尔滨工业大学,2009.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%