欢迎登录材料期刊网

材料期刊网

高级检索

在循环水冷和空气条件下对7A04-T6铝合金进行搅拌摩擦焊接(FSW),分析强制冷却对7A04-T6铝合金FSW接头组织性能的影响.结果表明:循环水冷具有明显的瞬时快冷作用,显著抑制再结晶晶粒和析出相的长大,焊核区的平均晶粒尺寸为0.8μm,析出相尺寸为30 ~ 150nm,均小于空气条件下接头的晶粒尺寸(2.81μm)及析出相尺寸(80 ~ 400nm).与空气条件下相比,强制水冷条件明显改善接头的力学性能.焊核区的平均硬度值提高11.9HV,接头抗拉强度提高43.2MPa,达到母材抗拉强度的87.6%;接头的应变硬化能力增强,拉伸断口呈现出微孔聚合型断裂特征.

参考文献

[1] 许良红,田志凌,彭云,肖荣诗,杨武雄.高强铝合金的激光焊接头组织及力学性能[J].中国激光,2008(03):456-461.
[2] THOMAS W M;NEEDLHAM J C;DAWES C J et al.Friction stir butt welding[P].UK,PCT/GB92/02203,1995-10-05.
[3] 夏罗生,陈累玉.搅拌摩擦焊技术在我国的发展及应用现状[J].热加工工艺,2013(17):13-15,19.
[4] Andreza S. Franchim;Fernando F. Fernandez;Dilermando N. Travessa .Microstructural aspects and mechanical properties of friction stir welded AA2024-T3 aluminium alloy sheet[J].Materials & design,2011(10):4684-4688.
[5] W. B. Lee;Y. M. Yeon;S. B Jung .The improvement of mechanical properties of friction-stir-welded A356 Al alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):154-159.
[6] Y.C. Chen;J.C. Feng;H.J. Liu .Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys[J].Materials Characterization,2009(6):476-481.
[7] 付春坤,白钢,王红宾,胡亚真.7050铝合金搅拌摩擦焊接头组织特征研究[J].航空精密制造技术,2012(03):49-51.
[8] Christian B. Fuller;Murray W. Mahoney;Mike Calabrese;Leanna Micona .Evolution of microstructure and mechanical properties in naturally aged 7050 and 7075 Al friction stir welds[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2010(9):2233-2240.
[9] 张成聪,沈小丽,封小松,郭立杰.2195铝锂合金填充式摩擦点焊接头显微组织与力学性能[J].航空材料学报,2014(01):22-26.
[10] 杨新岐,崔雷,徐效东,周光.铝合金6061-T6搅拌摩擦焊搭接焊缝缺陷及疲劳性能[J].航空材料学报,2013(06):38-44.
[11] 张丹丹,曲文卿,庄来杰,杨模聪,陈洁,孟强,柴鹏.铝锂合金搅拌摩擦焊搭接接头组织及力学性能[J].航空材料学报,2013(02):24-28.
[12] J.Q.Li;H.J.Liu .Characteristics of the reverse dual-rotation friction stir welding conducted on 2219-T6 aluminum alloy[J].Materials & design,2013(Mar.):148-154.
[13] 姜玉恒,刘金合,周卫涛.7050铝合金搅拌摩擦焊接头微观组织及力学性能分析[J].电焊机,2012(07):86-89.
[14] S.Benavides;Y.Li;L.E.Murr;D.Brown;J.C.McClure .Low-temperature friction-stir welding of 2024 aluminum[J].Scripta materialia,1999(8):809-815.
[15] H.J. Liu;H.J.Zhang;L.Yu .Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy[J].Materials & design,2011(3):1548-1553.
[16] 丁凯,吴楠,王文,于梦菲,王快社.水下搅拌摩擦焊接铝合金组织与性能研究[J].热加工工艺,2012(09):157-159.
[17] HJ. Zhang;H.J.Liu;L Yu .Microstructure and mechanical properties as a function of rotation speed in underwater friction stir welded aluminum alloy joints[J].Materials & design,2011(8/9):4402-4407.
[18] L. Fratini;G. Buffa;R. Shivpuri .Mechanical and metallurgical effects of in process cooling during friction stir welding of AA7075-T6 butt joints[J].Acta materialia,2010(6):2056-2067.
[19] 朱伟 .7075铝合金搅拌摩擦加工的组织结构及性能表征[D].重庆大学,2010.
[20] ZHANG Z;YU J;WANG Q et al.Effects of multiple plastic deformations on microstructure and mechanical properties of 7A04-T6[J].RARE METAL MATERIALS AND ENGINEERING,2011,40(Suppl 3):69-72.
[21] Dieringa, H. .Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: A review[J].Journal of Materials Science,2011(2):289-306.
[22] 何广进 .纳米SiC颗粒增强AZ91D镁基复合材料的强化机制研究[D].北京:清华大学,2012.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%