采用分子动力学方法研究在单轴拉伸载荷下孪晶界间距和孪晶界与拉伸载荷角度对纳米孪晶铁力学行为的影响。结果表明:纳米孪晶铁的屈服强度随着孪晶界间距的增大而增大,呈现反常的Hall-Petch关系;单晶铁中出现变形孪晶,此时其塑性变形以变形孪晶为主;弹性模量随孪晶界间距增大有轻微的增大;拉伸载荷与孪晶界不垂直时,屈服应力降低,变形方式则以去孪晶为主。
The effects of twin boundary spacing and angle between loading axis and twin boundary on the mechanical behavior of nano-twinned Fe under the uniaxial tensile load were studied by molecular dynamic simulation. The results indicate that the yield stress of nano-twinned Fe increases with the increase of twin boundary spacing, showing a trend of inverse Hall-Petch relation. The deformation twin exhibits in the single crystal iron,which is predominant in the plastic deformation process. The elastic modulus of nano-twinned Fe increases slightly with the increase of twin boundary spacing. When the tensile load is not perpendicular to the twin boundary, the yield stress decreases and the deformation is mainly detwinning.
参考文献
[1] | Ghaffarian, Hadi;Taheri, Ali Karimi;Kang, Keonwook;Ryu, Sennghwa.Molecular dynamics simulation study of the effect of temperature and grain size on the deformation behavior of polycrystalline cementite[J].Scripta materialia,2015:23-26. |
[2] | 成聪;陈尚达;吴勇芝;黄鸿翔.不同应变率下纳米多晶Cu/Ni薄膜变形行为的分子动力学模拟[J].材料工程,2015(3):60-66. |
[3] | 苏丹;窦秀明;丁琨;王海艳;倪海桥;牛智川;孙宝权.金纳米颗粒光散射提高InAs单量子点荧光提取效率?[J].物理学报,2015(23):235201-1-235201-6. |
[4] | 袁林;敬鹏;刘艳华;徐振海;单德彬;郭斌.多晶银纳米线拉伸变形的分子动力学模拟研究[J].物理学报,2014(1):016201-1-016201-6. |
[5] | 厉沙沙;李炯利;陈军洲;王胜强;熊艳才.块体纳米晶铝的力学性能及变形机理[J].航空材料学报,2015(3):13-17. |
[6] | 王海斗;董美伶;崔秀芳;邢志国;朱丽娜;刘金娜.不同厚度纳米Ti薄膜的力学性能[J].材料工程,2015(11):50-56. |
[7] | Jong Bae Jeon;Byeong-Joo Lee;Young Won Chang.Molecular dynamics simulation study of the effect of grain size on the deformation behavior of nanocrystalline body-centered cubic iron[J].Scripta materialia,20116(6):494-497. |
[8] | 王建伟;尚新春;吕国才.bcc-Fe空位浓度对辐照损伤影响的分子动力学模拟[J].材料工程,2011(10):15-18. |
[9] | L. Lu;X. Chen;X. Huang;K. Lu.Revealing The Maximum Strength In Nanotwinned Copper[J].Science,20095914(5914):607-610. |
[10] | M. Dao;L. Lu;Y.F. Shen.Strength, strain-rate sensitivity and ductility of copper with nanoscale twins[J].Acta materialia,200620(20):5421-5432. |
[11] | Konstantin A. Afanasyev;Frederic Sansoz.Strengthening in Gold Nanopillars with Nanoscale Twins[J].Nano letters,20077(7):2056-2062. |
[12] | Wang, Jiangwei;Sansoz, Frederic;Deng, Chuang;Xu, Gang;Han, Gaorong;Mao, Scott X..Strong Hall-Petch Type Behavior in the Elastic Strain Limit of Nanotwinned Gold Nanowires[J].Nano letters,20156(6):3865-3870. |
[13] | Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale[J].Science,2009Apr.17 TN.5925(Apr.17 TN.5925):349. |
[14] | Y.F. SHEN;L. LU;Q.H. LU.Tensile properties of copper with nano-scale twins[J].Scripta materialia,200510(10):989-994. |
[15] | L. Lu;R. Schwaiger;Z.W. Shan.Nano-sized twins induce high rate sensitivity of flow stress in pure copper[J].Acta materialia,20057(7):2169-2179. |
[16] | Chuang Deng;Frederic Sansoz.Repulsive force of twin boundary on curved dislocations and its role on the yielding of twinned nanowires[J].Scripta materialia,20101(1):50-53. |
[17] | Chuang Deng;Frederic Sansoz.Size-dependent yield stress in twinned gold nanowires mediated by site-specific surface dislocation emission[J].Applied physics letters,20099(9):091914-1-091914-3. |
[18] | 贺新福;D. Terentyev;杨文.α-Fe中〈110〉倾斜晶界的分子动力学研究[J].原子能科学技术,2011(8):902-907. |
[19] | Deng, C.;Sansoz, F..Near-ideal strength in gold nanowires achieved through microstructural design[J].ACS nano,200910(10):3001-3008. |
[20] | 卢磊;陈先华;黄晓旭;卢柯.纳米孪晶纯铜的极值强度及纳米孪晶提高金属材料综合强韧性[J].中国基础科学,2010(1):16-18. |
[21] | Sainath, G.;Choudhary, B. K.;Jayakumar, T..Molecular dynamics simulation studies on the size dependent tensile deformation and fracture behaviour of body centred cubic iron nanowires[J].Computational Materials Science,2015:76-83. |
[22] | Yongfeng Zhang;Paul C. Millett;Michael Tonks.Deformation twins in nanocrystalline body-centered cubic Mo as predicted by molecular dynamics simulations[J].Acta materialia,201218(18):6421-6428. |
[23] | S.Y. Hu;C.H. Henager Jr..Phase-field simulation of void migration in a temperature gradient[J].Acta materialia,20109(9):3230-3237. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%