欢迎登录材料期刊网

材料期刊网

高级检索

将多壁碳纳米管(MWCNTs)滴涂于复合陶瓷碳电极(CCE)表面,采用电化学方法在碳纳米管表面逐层沉积过氧化聚吡咯(OPPy)和金纳米粒子(AuNPs),制得金纳米粒子-过氧化聚吡咯-多壁碳纳米管复合膜修饰电极(AuNPs-OPPy-MWCNTs/CCE)。采用扫描电镜和电化学方法对修饰电极进行了表征。在0.10 mol/L PBS (pH 7.0)缓冲溶液中研究了对苯二酚(HQ)和邻苯二酚(CC)在修饰电极上的电化学行为。结果表明,修饰电极对HQ和CC的电极过程具有良好的电化学响应和区分效应。基于此建立了一阶导数伏安法同时测定HQ和CC的方法,HQ和CC的线性范围均为2.0×10-7~1.0×10-4 mol/L,检出限分别为6.0×10-8 mol/L和8.0×10-8 mol/L(S/N=3)。模拟水样中的加标回收率分别为96.2%~99.8%(HQ)和96.0%~100.0%,表明本方法具有良好的实用性。

A carbon ceramic electrode (CCE) was modified with a composite film composed of gold nanoparticles (AuNPs), overoxidized polypyrrole (OPPy), and multi-walled carbon nanotubes (MWCNTs) by two-step procedure. Firstly, MWCNTs were modified on the CCE surface by dropping method. Then, OPPy and gold nanoparticels were electrochemically deposited on the surface of MWCNTs layer by layer. The surface morphology and electrochemical properties of this modified electrode was studied. Furthermore, the electrochemical behaviors of hydroquinone (HQ) and catechol (CC) were also investigated in 0.10 mol/L phosphate buffer solution (PBS) (pH 7.0) using this modified electrode. The results showed that the modified electrode had high electrochemical activity and good selectivity for the oxidation of HQ and CC. Under the optimal conditions, the linear range for the simultaneous determination of HQ and CC by first derivative voltammetry was from 2.0×10-7 to 1.0×10-4 mol/L, respectively. The detection limit for HQ and CC was 6.0×10-8 and 8.0×10-8 mol/L (S/N=3), respectively. The recoveries of HQ and CC in simulated water samples were 96.2%-99.8% and 96.0%-100.0%, resptively, which indicated the good practicability of the method.

参考文献

[1] Gao W H, Cristina L Q.. J. Chromatogr. A, 2011,1218:4307-4311
[2] Wang H Y, Chen D L, Wei Y J, Yu L Q, Zhang P, Zhao J L.. Spectrochim. Acta A, 2011,79:2012-2016
[3] Iqbal Bhanger S M, Niaz A, Shah A, Rauf A.. Talanta, 2007,72(2):546-553.
[4] Judefeind A, van Rensburg P J, Langelaar S, du Plessis J.. J. Chromatogr. B, 2007,852:300-307
[5] Dong S Q, Chi L Z, Yang Z Y, He P G, Wang Q J, Fang Y Z.. J. Sep. Sci., 2009,32:3232-3238
[6] WANG Chun-Yan, YOU Tian-Yan, TIAN Jian.. Chinese J. Anal. Chem., 2011,39(4):528-533
王春燕, 由天艳, 田坚..分析化学,2011,39(4):528-533
[7] CHEN Huan, MA Wei, SUN Deng-Ming.. Chinese J. Appl.Chem., 2012,29(5):576-584
陈 欢, 马伟, 孙登明..应用化学,2012,29(5):576-584
[8] Saha K, Agasti S S, Kim C, Li X N, Rotello V M.. Chem. Rev., 2012,112:2739-2779
[9] Erogul S, Bas S Z, Ozmen M, Yildiz S.. Electrochim. Acta, 2015,186:302-313
[10] Wang Y, Xiong Y Y, Qu J Y, Qu J H, Li S F.. Sensor Actuat. B, 2016,223:501-508
[11] MA Zhen-Hua, WANG Hui-Cai, YAO Xiao-Xia, LIU Ming-Qiang, MA Yu-Qiang.. Chinese J. Anal.Chem., 2015,43(12):1906-1912
马振华, 王会才, 姚晓霞, 刘明强, 马禹强..分析化学,2015,43(12):1906-1912
[12] Huang J S, Zhang X P, Zhou L M, You T Y.. Sensor Actuat. B, 2016,224:568-576
[13] Feng S Q, Zhang Y Y, Zhong Y M, Li Y C, Li S X.. J. Electroanal. Chem., 2014,733:1-5
[14] Wang X, Wu M, Li H, Wang Q J, He P G, Fang Y Z.. Sensor Actuat. B, 2014,192:452-458
[15] Jian X, Liu X, Yang H M, Guo M M, Song X L, Dai H Y, Liang Z H.. Electrochim. Acta, 2016,190:455-462
[16] Prathap M A, Satpati B, Srivastava R.. Sensor Actuat. B, 2013,186:67-77
[17] Liu W L, Li C, Tang L, Tong A Y, Gu Y, Cai R, Zhang L, Zhang Z Q.. Electrochim. Acta, 2013,88:15-23
[18] Witkowski A, Brajtertoth A.. Anal. Chem., 1992,64:635-641
[19] Yu H, Jian X, Jin J, Zheng X C, Liu R T, Qi G Q.. Microchim. Acta, 2015,182:157-165
[20] Li J, Lin X Q.. Anal. Chim. Acta, 2007,596:222-230
[21] Woo S, Kim Y R, Chung T D, Piao Y Z, Kim H.. Electrochim. Acta, 2012,59:509-514
[22] Bard A J, Faulkner L R.. Electrochemical Methods Fundamentals and Applications , Translated by SHAO Yuan-Hua, ZHU Guo-Yi, DONG Xian-Dui, ZHANG Bai-Lin, Beijing:Chemical Industry Press, 2005:407-[410] Bard A J, Faulkner L R..
电化学方法原理和应用(第二版). 邵元华, 朱果逸, 董献堆, 张柏林译. 北京:化学工业出版社,2005:407-410
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%