欢迎登录材料期刊网

材料期刊网

高级检索

SiO2气凝胶复合材料具有纳米尺度结构和极低热导率,作为隔热保温材料在航天航空、建筑和其他工业领域具有重要的科学和应用价值。根据纤维在气凝胶基体中的不同分布方式,概述了预测 SiO2气凝胶复合材料的气固耦合热导率的研究进展;基于纤维和气凝胶的消光系数的不同计算方法,概述了预测 SiO2气凝胶复合材料的辐射热导率的研究进展。并提出了纤维增强气凝胶复合材料体系存在的跨尺度、多物相、分级及相互耦合等仍需进一步解决的难题,结合最新发展的格子 Boltzmann 方法(LBM),指出了预测 SiO2气凝胶复合材料等效热导率的可能发展方向。

SiO2 aerogel composites with nano-scale structure and very low thermal conductivity have widely been used in aeronautics and astronautics,construction and other industries for thermal insulations.The research de-velopment in the conductive thermal conductivity of the SiO2 aerogel composites are reviewed according to the various distribution modes of reinforced fibers in aerogel matrix.Based on the calculation methods of the extinction coefficients of aerogels and fiber reinforcements,the advances in the radiative thermal conductivity of the SiO2 aerogel composites are demonstrated.The existing difficulties in predicting the effective thermal conductivity of the SiO2 aerogel compo-sites are generalized relevant to the cross scale,multiphase,classification and interconnection in the fiber-reinforced SiO2 aerogel composites.The perspective of the accurate prediction of the effective thermal conductivity of SiO2 aero-gel composites is also proposed involving a newly developed method - lattice Boltzmann method.

参考文献

[1] Pierre A C;Rigacci A.SiO2 aerogels[M].New York:Springer-Verlag,2011
[2] 史亚春,李铁虎,吕婧,刘和光.气凝胶材料的研究进展[J].材料导报,2013(09):20-24.
[3] 殷帅;吴会军;丁云飞 等.疏水 SiO2 气凝胶的常压制备及应用进展[J].材料导报:综述篇,2011,25(2):33.
[4] A.M. Papadopoulos .State of the art in thermal insulation materials and aims for future developments[J].Energy and buildings,2005(1):77-86.
[5] 马荣,童跃进,关怀民.SiO2气凝胶的研究现状与应用[J].材料导报,2011(01):58-64.
[6] 廖云丹 .纤维增强 SiO2 气凝胶隔热复合材料的可控制备及性能优化研究[D].广州:广州大学,2012.
[7] 施伟;谭毅;曹作暄 .隔热材料研究现状及发展趋势[J].材料导报,2012,26(S1):344.
[8] Zhao, J.-J.;Duan, Y.-Y.;Wang, X.-D.;Wang, B.-X. .Effects of solid-gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels[J].Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology,2012(8):1024-1-1024-15.
[9] 熊刚,陈晓红,吴文军,胡子君,孙陈诚,宋怀河.柔韧性二氧化硅气凝胶的研究进展[J].硅酸盐通报,2010(05):1079-1085.
[10] 张欣欣,乐恺,刘育松,王戈,倪文.二氧化硅气凝胶的等效热导率理论[J].宇航材料工艺,2010(02):15-19,23.
[11] Zhao, J.-J.;Duan, Y.-Y.;Wang, X.-D.;Wang, B.-X. .A 3-D numerical heat transfer model for silica aerogels based on the porous secondary nanoparticle aggregate structure[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2012(10):1287-1297.
[12] Moran Wang;Xinmiao Wang;Jinku Wang;Ning Pan .GRAIN SIZE EFFECTS ON EFFECTIVE THERMAL CONDUCTIVITY OF POROUS MATERIALS WITH INTERNAL THERMAL CONTACT RESISTANCE[J].Journal of porous media,2013(11):1043-1048.
[13] 陆规,段远源,王晓东.微米尺度结构特征对纳米材料热导率的影响[J].宇航材料工艺,2011(01):29-33.
[14] Zeng S;Hunt A;Greif R .Geometric structure and thermal conductivity of porous medium silica aerogel[J].Journal of Heat Transfer,1995,117(4):1055.
[15] Wei G S;Liu Y S;Zhang X X et al.Thermal conductivi-ties study on silica aerogel and its composite insulation mate-rials[J].International Journal of Heat and Mass Transfer,2011,54(11):2355.
[16] Xie T;He Y L;Hu Z J .Theoretical study on thermal con-ductivities of silica aerogel composite insulating material[J].International Journal of Heat and Mass Transfer,2013,58(1-2):540.
[17] Wu H J;Liao Y D;Ding Y F et al.Engineering thermal and mechanical properties of multilayer aligned fiber-rein-forced aerogel composites[J].HEAT TRANSFER ENGINEERING,2014,35(11-12):1061.
[18] Yundan Liao;Huijun Wu;Yunfei Ding .Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites[J].Journal of Sol-Gel Science and Technology,2012(3):445-456.
[19] Wu H J;Liao Y D;Ding Y F.Controllable prepara-tion and performance regulation of aligned fiber-reinforced aerogels composites for super-thermal insulation[A].广州,2012:92.
[20] Kamran Daryabeigi .Heat Transfer in High-Temperature Fibrous Insulation[J].Journal of thermophysics and heat transfer,2003(1):10-20.
[21] Moran Wang;Ning Pan .Predictions of effective physical properties of complex multiphase materials[J].Materials Science & Engineering, R. Reports: A Review Journal,2008(1):1-30.
[22] Siegel R.Thermal radiation heat transfer[M].New York:CRC Press,2001
[23] Wei, G.;Liu, Y.;Zhang, X.;Du, X..Radiative heat transfer study on silica aerogel and its composite insulation materials[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2013:231-236.
[24] Lee D;Stevens P C;Zeng S Q et al.Thermal characteriza-tion of carbon-opacified silica aerogels[J].J Non-Cryst So-lids,1995,186:285.
[25] Bohren C F;Huffman D R.Absorption and scattering of light by small particles[M].New York:Wiley,1983
[26] Cunnington G R;Lee S C .Radiative properties of fibrous insulations-Theory versus experiment[J].Journal of Thermophysics and Heat Transfer,1996,10(3):460.
[27] Min Xu .Light extinction and absorption by arbitrarily oriented finite circular cylinders by use of geometrical path statistics of rays[J].Applied optics,2003(33):6710-6723.
[28] Zhao J J;Duan Y Y;Wang X D et al.Radiative properties and heat transfer characteristics of fiber-loaded silica aerogel composites for thermal insulation[J].International Journal of Heat and Mass Transfer,2012,55(19-20):5196.
[29] 何雅玲;王勇;李庆.格子 Boltzmann 方法的理论及应用[M].北京:科学出版社,2009
[30] Wang MR;Wang JK;Pan N;Chen SY .Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2007(3 Pt.2):6702-1-6702-10-0.
[31] Moran Wang;Jihuan He;Jianyong Yu;Ning Pan .Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials[J].International Journal of Thermal Sciences,2007(9):848-855.
[32] Wang M R;Kang Q J;Pan N .Thermal conductivity en-hancement of carbon fiber composites[J].Applied Tnermal Engineering,2009,29(2):418.
[33] 何超,何雅玲,谢涛,刘清.基于格子Boltzmann方法的纤维增强气凝胶复合材料等效热导率求解[J].工程热物理学报,2013(04):742-745.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%