欢迎登录材料期刊网

材料期刊网

高级检索

有机无机复合钙钛矿太阳能电池因具有适合的载流子扩散长度而成为备受关注的有望获得高效率的光伏器件.复合钙钛矿材料本身不含贵金属元素,可以采用液相法或物理气相法低温制备,成本低廉,但目前应用最多的电子传输层材料TiO2需400~500℃煅烧,与柔性基底及低温制备技术适应性差;空穴传输层材料SpiroOMeTAD合成工艺复杂,价格高昂,限制了复合钙钛矿太阳能电池的开发应用.开发和研究导电性好、成本低、稳定性好的电子和空穴传输层材料是复合钙钛矿太阳能电池研究中的一个非常重要的方面.综述了复合钙钛矿太阳能电池中电荷传输层材料的研究进展及发展方向.电子传输层材料方面通过对TiO2的改性以及与石墨烯的复合,采用ZnO、石墨烯或PCBM作为电子传输层材料,以与柔性基底及低温制备技术相适应.空穴传输层材料方面,采用其它低成本、导电性高的有机p型半导体替代spiro-OMeTAD;采用无机空穴传输层材料以避免有机空穴传榆层材料的老化问题,提高电池的长期稳定性;利用复合钙钛矿材料兼作吸收层与空穴传输层,制备无空穴传输层材料结构电池以降低成本,提高稳定性.

参考文献

[1] Ferrage, Fabien;Cowburn, David;Ghose, Ranajeet .Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J].Journal of the American Chemical Society,2009(17):6050-6051.
[2] Jeong-Hyeok Im;Chang-Ryul Lee;Jin-Wook Lee .6.5% efficient perovskite quantum-dot-sensitized solar cell[J].Nanoscale,2011(10):4088-4093.
[3] Kim H;Lee C;Im J et al.Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %[J].Sci Rep,2012,2:591.
[4] Etgar, L.;Gao, P.;Xue, Z.;Peng, Q.;Chandiran, A.K.;Liu, B.;Nazeeruddin, M.K.;Gr?tzel, M. .Mesoscopic CH _3NH _3PbI _3/TiO _2 heterojunction solar cells[J].Journal of the American Chemical Society,2012(42):17396-17399.
[5] Lee M M;Teuscher J;Miyasaka T et al.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J].SCIENCE,2012,338(6107):643.
[6] Hodes G .Perovskite-based solar cells[J].SCIENCE,2013,342(6156):317.
[7] Zhou H;Chen Q;Li G et al.Interface engineering of highly efficient perovskite solar cells[J].SCIENCE,2014,345(6196):542.
[8] Qin P;Domanski A L;Chandiran A K et al.Yttrium-substituted nanocrystalline TiO2 photoanodes for perovskite based heterojunction solar cells[J].Nanoscale,2014,6(3):1508.
[9] Chandiran A K;Yella A;Mayer M T et al.Sub-nanometer conformal TiO2 blocking layer for high efficiency solid-state perovskite absorber solar cells[J].Advanced Materials,2014,26(25):4309.
[10] Conings B;Baeten L;Jacobs T et al.An easy-to-fabricate low temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells[J].APLMater,2014,2:081505.
[11] Jacob Tse-Wei Wang;James M. Ball;Eva M. Barea;Antonio Abate;Jack A. Alexander-Webber;Jian Huang;Michael Saliba;Iva?n Mora-Sero;Juan Bisquert;Henry J. Snaith;Robin J. Nicholas .Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells[J].Nano letters,2014(2):724-730.
[12] Zonglong Zhu;Jiani Ma;Zilong Wang;Cheng Mu;Zetan Fan;Lili Du;Yang Bai;Louzhen Fan;He Yan;David Lee Phillips;Shihe Yang .Efficiency Enhancement of Perovskite Solar Cells through Fast Electron Extraction: The Role of Graphene Quantum Dots[J].Journal of the American Chemical Society,2014(10):3760-3763.
[13] Sunita Khanchandani;Simanta Kundu;Amitava Patra .Shell Thickness Dependent Photocatalytic Properties of ZnO/CdS Core-Shell Nanorods[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2012(44):23653-23662.
[14] Mulmudi Hemant Kumar;Natalia Yantara;Sabba Dharani;Michael Graetzel;Subodh Mhaisalkar;Pablo P. Boix;Nripan Mathews .Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells[J].Chemical communications,2013(94):11089-11091.
[15] Son D;Im J;Kim H et al.11% efficient perovskite solar cell based on ZnO nanorods:An effective charge collection system[J].J Phys Chem C,2014,2014,118(30):16567.
[16] Dianyi Liu;Timothy L. Kelly .Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J].Nature photonics,2014(2):133-138.
[17] Mahmood K;Swain B S;Jung H S .Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells[J].Nanoscale,2014,6(15):9127.
[18] Jeng J;Chiang Y;Lee M et al.CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells[J].Advanced Materials,2013,25(27):3727.
[19] Docampo P;Ball J M;Darwich M et al.Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates[J].Nat Comrnun,2013,4:2761.
[20] Olga Malinkiewicz;Aswani Yella;Yong Hui Lee;Guillermo Mínguez Espallargas;Michael Graetzel;Mohammad K. Nazeeruddin;Henk J. Bolink .Perovskite solar cells employing organic charge-transport layers[J].Nature photonics,2014(2):128-132.
[21] Malinkiewicz O;Roldan-Carmona C;Soriano A et al.Metal-oxide free methylammonium lead iodide perovskite-based solar cells:The influence of organic charge transport layers[J].Adv Energy Mater,2014,4(15):1400345.
[22] Jingbi You;Ziruo Hong;Yang (Michael) Yang;Qi Chen;Min Cai;Tze-Bin Song;Chun-Chao Chen;Shirong Lu;Yongsheng Liu;Huanping Zhou;Yang Yang .Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility[J].ACS nano,2014(2):1674-1680.
[23] Seo J;Park S;Chan Kim Y et al.Benefits of very thin PCBM and LiF layers for solution-processed p-i n perovskite solar cells[J].Energy Environ Sci,2014,7(8):2642.
[24] Kwon Y S;Lim J;Yun H et al.A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic-inorganic hybrid solar cells based on a perovskite[J].Energy Environ Sci,2014,7(4):1454.
[25] Zhang H;Shi Y;Yan F et al.A dual functional additive for the HTM layer in perovskite solar cells[J].Chemistry Communications,2014,50(39):5020.
[26] Nam Joong Jeon;Hag Geun Lee;Young Chan Kim;Jangwon Seo;Jun Hong Noh;Jaemin Lee;Sang Il Seok .o-Methoxy Substituents in Spiro-OMeTAD for Efficient Inorganic? Organic Hybrid Perovskite Solar Cells[J].Journal of the American Chemical Society,2014(22):7837-7840.
[27] Koh T M;Dharani S;Li H et al.Cobalt dopant with deep redox potential for organometal halide hybrid solar cells[J].Chem Sus Chem,2014(7):1909.
[28] Wang J;Wang S;Li X et al.Novel hole transporting materials with a linear n conjugated structure for highly efficient perovskite solar cells[J].Chemistry Communications,2014,50(44):5829.
[29] Qin P;Kast H;Nazeeruddin M K et al.Low band gap S,N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells[J].Energy Environ Sci,2014,7:2981.
[30] Qin P;Paek S;Dar M I et al.Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material[J].Journal of the American Chemical Society,2014,136(24):8516.
[31] Thirumal Krishnamoorthy;Fu Kunwu;Pablo P. Boix .A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells[J].Journal of Materials Chemistry, A. Materials for energy and sustainability,2014(18):6305-6309.
[32] Anurag Krishna;Dharani Sabba;Hairong Li .Novel hole transporting materials based on triptycene core for high efficiency mesoscopic perovskite solar cells[J].Chemical science,2014(7):2702-2709.
[33] Songtao Lv;Liying Han;Junyan Xiao;Lifeng Zhu;Jiangjian Shi;Huiyun Wei;Yuzhuan Xu;Juan Dong;Xin Xu;Dongmei Li;Shirong Wang;Yanhong Luo;Qingbo Meng;Xianggao Li .Mesoscopic TiO_2/CH_3NH_3PbI_3 perovskite solar cells with new hole-transporting materials containing butadiene derivatives[J].Chemical communications,2014(52):6931-6934.
[34] Hairong Li;Kunwu Fu;Anders Hagfeldt .A Simple 3,4-Ethylenedioxythiophene Based Hole-Transporting Material for Perovskite Solar Cells[J].Angewandte Chemie,2014(16):4085-4088.
[35] Eran Edri;Saar Kirmayer;David Cahen .High Open-Circuit Voltage Solar Cells Based on Organic?Inorganic Lead Bromide Perovskite[J].Journal of physical chemistry letters,2013(6):897-902.
[36] Edri E;Kirmayer S;Kulbak M et al.Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells[J].J Phys Chem Lett,2014,5(3):429.
[37] Di Giacomo F;Razza S;Matteocci F et al.High efficiency CH3 NH3 PbI(3-x) Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer[J].Journal of Power Sources,2014,251:152.
[38] Conings B;Baeten L;De Dobbelaere C et al.Perovskitebased hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach[J].Advanced Materials,2014,26(13):2041.
[39] Abrusci, A.;Stranks, S.D.;Docampo, P.;Yip, H.-L.;Jen, A.K.-Y.;Snaith, H.J. .High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers[J].Nano letters,2013(7):3124-3128.
[40] Guo Y;Liu C;Inoue K et al.Enhancement in the efficiency of an organic-inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer[J].J Mater Chem A,2014,2:13827.
[41] Heo, J.H.;Im, S.H.;Noh, J.H.;Mandal, T.N.;Lim, C.-S.;Chang, J.A.;Lee, Y.H.;Kim, H.-J.;Sarkar, A.;Nazeeruddin, M.K.;Gr?tzel, M.;Seok, S.I. .Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors[J].Nature photonics,2013(6):486-491.
[42] Noh, J.H.;Im, S.H.;Heo, J.H.;Mandal, T.N.;Seok, S.I. .Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J].Nano letters,2013(4):1764-1769.
[43] Sarkar A;Jeon N J;Noh J H et al.Well-organized mesoporous TiO2 photoelectrodes by block copolynner-induced sol-gel assembly for inorganic-organic hybrid perovskite solar cells[J].J Phys Chem C,2014,118(30):16688.
[44] Yan W;Li Y;Sun W et al.High performance hybrid perovskite solar cells with polythiophene as hole-transporting layer via electrochemical polymerization[J].RSC Adv,2014,4:33039.
[45] Xiao Y;Han G;Chang Y et al.An all-solid-state perovskite-sensitized solar cell based on the dual function polyaniline as the sensitizer and p-type hole-transporting material[J].Journal of Power Sources,2014,267:1.
[46] Bing Cai;Yedi Xing;Zhou Yang;Wen-Hua Zhang;Jieshan Qiu .High performance hybrid solar cells sensitized by organolead halide perovskites[J].Energy & environmental science: EES,2013(5):1480-1485.
[47] Chavhan S;Miguel O;Grande H et al.Organo metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact[J].J Mater Chem A,2014,2(32):12754.
[48] Ito S;Tanaka S;Vahlman H et al.Carbon-double-bondfree printed solar cells from TiO2/CH3 NH3PbI3/CuSCN/Au:Structural control and photoaging effects[J].CHEMPHYSCHEM,9014,15(6):1194.
[49] Ito S;Tanaka S;Manabe K et al.Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells[J].J Phys Chem C,2014,118(30):16995.
[50] Qin P;Tanaka S;Ito S et al.Inorganic hole conductorbased lead halide perovskite solar cells with 12.4% conversion efficiency[J].Nat Cornmun,2014,5:3834.
[51] Jeffrey A. Christians;Raymond C. M. Fung;Prashant V. Kamat .An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide[J].Journal of the American Chemical Society,2014(2):758-764.
[52] Wang K;Jeng J;Shen P et al.P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells[J].Sci Rep,2014,4:4756.
[53] Jeng J;Chen K;Chiang T et al.Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells[J].Advanced Materials,2014,26(24):4107.
[54] Hu L;Peng J;Wang W et al.Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells[J].ACS Photonics,2014,1(7):547.
[55] Zhu Z;Bai Y;Zhang T et al.High-performance hole-extraction layer of sol/gel-processed NiO nanocrystals for in verted planar perovskite solar cells[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2014,53(46):12571.
[56] Aharon S;Cohen B E;Etgar L .Hybrid lead halide iodide and lead halide bromide in efficient hole conductor free perovskite solar cell[J].J Phys Chem C,2014,118(30):17160.
[57] Aharon S;Gamliel S;Cohen B E et al.Depletion region effect of highly efficient hole conductor free CH3NHsPbI3 perovskite solar cells[J].Physical Chemistry Chemical Physics,2014,16(22):10512.
[58] Waleed Abu Laban;Lioz Etgar .Depleted hole conductor-free lead halide iodide heterojunction solar cells[J].Energy & environmental science: EES,2013(11):3249-3253.
[59] Jiangjian Shi;Juan Dong;Songtao Lv;Yuzhuan Xu;Lifeng Zhu;Junyan Xiao;Xin Xu;Huijue Wu;Dongmei Li;Yanhong Luo;Qingbo Meng .Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property[J].Applied physics letters,2014(6):063901-1-063901-4.
[60] Shi J;Luo Y;Wei H et al.Modified two-step deposition method for high-efficiency TiO2/CH3 NH3 PbI3 heterojunction solar cells[J].ACS Appl Mater Interfaces,2014,6(12):9711.
[61] Yuzhuan Xu;Jiangjian Shi;Songtao Lv .Simple Way to Engineer Metal-Semiconductor Interface for Enhanced Performance of Perovskite Organic Lead Iodide Solar Cells[J].ACS applied materials & interfaces,2014(8):5651-5656.
[62] SHI Jiang-Jian,DONG Wan,XU Yu-Zhuan,LI Chun-Hui,LV Song-Tao,ZHU Li-Feng,DONG Juan.Enhanced Performance in Perovskite Organic Lead Iodide Heterojunction Solar Cells with Metal-Insulator-Semiconductor Back Contact[J].中国物理快报(英文版),2013(12):179-182.
[63] Zhen Li;Sneha A. Kulkarni;Pablo P. Boix;Enzheng Shi;Anyuan Cao;Kunwu Fu;Sudip K. Batabyal;Jun Zhang;Qihua Xiong;Lydia Helena Wong;Nripan Mathews;Subodh G. Mhaisalkar .Laminated Carbon Nanotube Networks for Metal Electrode-Free Efficient Perovskite Solar Cells[J].ACS nano,2014(7):6797-6804.
[64] Xu M;Rong Y;Ku Z et al.Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell[J].J Mater Chem A,2014,2(23):8607.
[65] Rong Y;Ku Z;Mei A et al.Hole-conductor-free mesoscopic TiO2/CH3 NH3 PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes[J].J Phys Chem Lett,2014,5(12):2160.
[66] Mei A;Li X;Liu L et al.A hole-conductor-free,fully printable mesoscopic perovskite solar cell with high stability[J].Science,2014,345(6194):295.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%