欢迎登录材料期刊网

材料期刊网

高级检索

利用密度泛函理论研究了HCHO分子在TiO2金红石(110)面和锐钛矿(101)面上的吸附,结果表明甲醛在这些面上均能形成稳定的化学吸附与物理吸附.在物理吸附中,分子构型受吸附的影响均十分微弱.而在化学吸附中,甲醛分子明显变形,甲醛分子与表面的2配位O原子(O2C)一起形成双氧甲基(CH2O2)物种.化学吸附导致HCHO分子中的羰基延长14%~17%,表明吸附削弱了分子内原子之间的作用,从而有利于分解.此外,在这两种表面中,金红石(110)面对HCHO较强的吸附显示了其活性比锐钛矿(101)面高.

参考文献

[1] Wang, J;Zhang, P;Qi, JQ;Yao, PJ .Silicon-based micro-gas sensors for detecting formaldehyde[J].Sensors and Actuators, B. Chemical,2009(2):399-404.
[2] Yamazoe N .Toward innovations of gas sensor technology[J].Sensors and Actuators B-Chemical,2005,108(1-2):2.
[3] Han, N;Tian, YJ;Wu, XF;Chen, YF .Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO[J].Sensors and Actuators, B. Chemical,2009(1):228-235.
[4] Daza L;Dassy S;Delmon B .Chemical sensors based on SnO2 and WO3 for the detection of formaldehyde:Cooperative effects[J].Sensors and Actuators B-Chemical,1993,10(02):99.
[5] Dirksen JA.;Ring TA.;Duval K. .NiO thin-film formaldehyde gas sensor[J].Sensors and Actuators, B. Chemical,2001(2):106-115.
[6] Chia-Yen Lee;Che-Ming Chiang;Yu-Hsiang Wang;Rong-Hua Ma .A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection[J].Sensors and Actuators, B. Chemical,2007(2):503-510.
[7] Chen T;Zhou ZL;Wang YD .Effects of calcining temperature on the phase structure and the formaldehyde gas sensing properties of CdO-mixed In2O3[J].Sensors and Actuators, B. Chemical,2008(1):219-223.
[8] Liping Yang;Zhenyan Liu;Jianwei Shi .Degradation of indoor gaseous formaldehyde by hybrid VUV and TiO2/UV processes[J].Separation and Purification Technology,2007(2):204-211.
[9] Li, SF;Li, FP;Rao, ZM .A novel and sensitive formaldehyde gas sensor utilizing thermal desorption coupled with cataluminescence[J].Sensors and Actuators, B. Chemical,2010(1):78-83.
[10] Hao Chen;Yuan Liu;Changsheng Xie .A comparative study on UV light activated porous TiO_2 and ZnO film sensors for gas sensing at room temperature[J].CERAMICS INTERNATIONAL,2012(1):503-509.
[11] Lin, S.;Li, D.;Wu, J.;Li, X.;Akbar, S.A. .A selective room temperature formaldehyde gas sensor using TiO_2 nanotube arrays[J].Sensors and Actuators, B. Chemical,2011(2):505-509.
[12] H.Perron;C.Domain;J.Roques .Optimisation of accurate rutile TiO2(110),(100),(101)and(001)surface models from periodic DFT calculations[J].Theoretical chemistry accounts,2007(4):565-574.
[13] Zongyan Zhao;Zhaosheng Li;Zhigang Zou .Surface properties and electronic structure of low-index stoichiometric anatase TiO2 surfaces[J].Journal of Physics. Condensed Matter,2010(17):175008:1-175008:18.
[14] Diebold U .The surface science of titanium dioxide[J].Surface Science Reports,2003,48(5-8):53.
[15] Diebold U;Ruzycki N;Herman G S et al.One step to wards bridging the materials gap:Surface studies of TiO2 anatase[J].Catalysis Today,2003,85(2-4):93.
[16] Chen Q;Tang C;Zheng G .First-principles study of anatase (101) surfaces doped with N[J].Phys B:Condens Matter,2009,404(8-11):1074.
[17] Haubrich, J.;Kaxiras, E.;Friend, C.M. .The role of surface and subsurface point defects for chemical model studies on TiO_2: A first-principles theoretical study of formaldehyde bonding on rutile TiO_2(110)[J].Chemistry: A European journal,2011(16):4496-4506.
[18] Sun S;Ding J;Bao J et al.Photocatalytic oxidation of gaseous formaldehyde on TiO2:An in situ DRIFTS study[J].Catalysis Letters,2010,137(3-4):239.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%