欢迎登录材料期刊网

材料期刊网

高级检索

通过综述当前氧化物冶金技术的理论研究、夹杂物数值模拟的研究和凝固过程模拟方法的研究进展,提出利用proCAST软件,在元胞自动机-宏观有限元耦合算法(CAFE)模型的基础上开发模拟凝固过程中非金属夹杂物诱发晶内铁素体形核和细化晶粒组织的过程,预测氧化物冶金中非金属夹杂物的种类、尺寸和细化晶粒组织的工艺参数.

参考文献

[1] 刘中柱,桑原守.氧化物冶金技术的最新进展及其实践[J].炼钢,2007(03):7-13.
[2] 余圣甫,雷毅,黄安国,谢明立,李志远.氧化物冶金技术及其应用[J].材料导报,2004(08):50-52.
[3] 李宏.钢中非金属夹杂物存在状态的不确定性与检测[J].冶金分析,2008(09):1-6.
[4] 邓安元,赫冀成,贾光霖.方坯凝固过程中夹杂物的运动轨迹[J].东北大学学报(自然科学版),2000(05):532-535.
[5] 雷洪,朱苗勇,赫冀成.连铸结晶器内非金属夹杂物运动行为模拟[J].过程工程学报,2001(02):138-141.
[6] 雷洪,赫冀成.板坯连铸机内钢液流动和夹杂物碰撞长大行为[J].金属学报,2007(11):1195-1200.
[7] Zhang L F;Aoki U N;Thomas B G .Inclusion removal by bubble flotation in a continuous casting mold[J].Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,2006,37:361.
[8] Lifeng Zhang;Brian G. Thomas .Numerical simulation on inclusion transport in continuous casting mold[J].Journal of University of Science and Technology Beijing,2006(4):293-300.
[9] Yuan Q;Thomas B G;Vanka S P .Study of transient flow and particle transport in continuous steel caster molds:Part Ⅱ.Particle transport[J].Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,2004,35:703.
[10] 唐宁,孙长波,张航,许庆彦,柳百成.高温合金单晶叶片定向凝固过程的宏微观数值模拟[J].稀有金属材料与工程,2013(11):2298-2303.
[11] 徐耀增,杜振拴,宋绪丁.离心铸造凝固过程的流场和温度场数值模拟[J].热加工工艺,2012(21):40-43,46.
[12] 魏鑫燕,朱荣,林腾昌.大钢锭凝固过程的数值模拟研究[J].铸造技术,2011(11):1576-1579.
[13] 侯卫周,曹新国,徐宏.铸件凝固过程微观组织模拟研究状况[J].铸造,2006(10):1047-1051.
[14] Zhu P;Smith R W .Dynamic simulation of crystal growth by monte carlo method工model description and kinetics[J].Acta Metall,1992,40(4):683.
[15] Zhu P;Smith R W .Dynamic simulation of crystal growth by monte carlo methodⅡ ingot microstructures[J].Acta Metall,1992,40(12):3369.
[16] 赵素华,潘秀兰,王艳红,梁慧智.氧化物冶金工艺的新进展及其发展趋势[J].炼钢,2009(02):66-69,77.
[17] 严力,王猛,刘文锋,黄卫东.AZ91D镁合金反重力铸造充型及凝固过程计算机模拟[J].铸造技术,2006(07):723-728.
[18] 金俊泽;王宗廷;郑贤淑 .金属凝固组织形成的仿真研究[J].金属学报,1998,34(9):928.
[19] 唐勇;金俊泽 .金属凝固组织的计算机仿真[J].大连理工大学学报,1997,37(5):560.
[20] Lee K Y;Hong C P .Stochastic modeling of solidification grain structure of Al-Cu crystalline ribbons in planar casting[J].ISIJ International,1997,37(1):38.
[21] Cho I S;Hong C P .Modeling of microstructural evolution in squeeze casting of an Al-45mass%Cu alloy[J].ISIJ International,1997,37(11):1098.
[22] S.Y.Lee;S.M.Lee .Numerical modeling of deflected columnar dendritic grains solidified in a flowing melt and its experimental verification[J].ISIJ International,2000(1):48-58.
[23] Cho S H .Contribution of nucleation process to grain formation in calculating solidification microstructure by CADFD[R].Tokyo,Japan,2000.
[24] M.F.ZHU;C.P.HONG .A Modified Cellular Automaton Model for the Simulation of Dendritic Growth in Solidification of Alloys[J].ISIJ International,2001(5):436-445.
[25] Zhu M F;Kim J M;Hong C P .Modeling of globular and dendritic structure evolution in solidification of an Al7mass%Si alloy[J].ISIJ International,2001,41(9):992.
[26] Chang S R;Kim J M;Hong C P .Numerical simulation of microstructure evolution of Al alloys in centrifugal casting[J].ISIJ International,2001,1(7):738.
[27] 于艳梅,A.Karma,C.Beckermann.相场法凝固组织模拟的研究进展[J].铸造,2000(09):507.
[28] Fife P C;Gill G S .Phase transition mechanism Ms for the phase-field model under internal heating[J].Physical Review A,1991,43(2):843.
[29] Kobayashi R .Modeling and numerical simulations of dendritic crystal growth[J].Physical Review D:Particles and Fields,1993,63(10):410.
[30] Karma A;Rappel W J .Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics[J].Physical Review D:Particles and Fields,1996,53(4):R3017.
[31] Karma A;Rappel W J .Numerical simulation of three-dimensional dendritic growth[J].Physical Review Letters,1996,77(10):4050.
[32] Tonhardt R.;Amberg G. .Phase-field simulation of dendritic growth in a shear flow[J].Journal of Crystal Growth,1998(3/4):406-425.
[33] Kim SG.;Suzuki T.;Kim WT. .Interfacial compositions of solid and liquid in a phase-field model with finite interface thickness for isothermal solidification in binary alloys[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,1998(3 Pt.b):3316-3323.
[34] Lee J S;Suzuki T .Numerical simulation of isothermal dendritic growth by phase-field model[J].ISIJ International,1999,39(3):246.
[35] Seong Gyoon KIM;Won Tae KIM;Jae Sang LEE .Large Scale Simulation of Dendritic Growth in Pure Undercooled Melt by Phase-field Model[J].ISIJ International,1999(4):335-340.
[36] Tong X.;Karma A.;Beckermann C. .Velocity and shape selection of dendritic crystals in a forced flow[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,2000(1):R49-R52.
[37] Zhu M F;Kim J M;Hong C P .Numerical prediction of the secondary dendrite arm spacing using a phase-field model[J].ISIJ International,2001,41(4):345.
[38] 许庆彦,柳百成.采用Cellular Automaton法模拟铝合金的微观组织[J].中国机械工程,2001(03):328-331.
[39] Oldfield W .A quantitative approach to casting solidification[J].Freezing Cast Iron,ASM Trans,1966,59(2):945.
[40] Thevoz Ph;Desbiolies J L;Rappaz M .Modeling of equiaxed microstructure formation in casting[J].METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE,1989,20A:311.
[41] Maxwell I;Hellawell A .A simple model for grain refinement during solidification[J].Acta Metall,1975,23:229.
[42] Hunt J D .Steady state columnar and equiaxed growth of dendrites and eutectic[J].Material Science and Engineering,1984,65:75.
[43] Stefanescu D M;Upadhya G;Bandyopadhyay D .Heat transfer-solidification kinetics modeling of solidification of castings[J].Mater Trans A,1990,21:997.
[44] Rappaz M;Thevoz Ph .Solute diffusion model for exquiaxed dendritic growth[J].Acta Metal1,1987,35(7):1487.
[45] Rappaz M;Thevoz Ph .Solute diffusion model for exquiaxed dendritic growth:Analytical solution[J].Acta Metal1,1987,5(12):2929.
[46] Wang C Y;Beckermann C .Prediction of columnar to equiaxed transition during diffusion-controlled dendritic alloy solidification[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1994,25:1081.
[47] Wang C Y;Beckermann C .Equiaxed dendritic solidification with convection multiscale/multiphase modeling[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1996,27(9):2754.
[48] Wang C Y;Beckermann C .Equiaxed dendritic solidification with convection numerical simulations for an Al-4wtpct Cu alloy[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1996,27(9):2765.
[49] Lipton J;Glicksman M E;Kurz W .Equiaxed dendrite growth in alloys at small supercooling[J].Mater Trans A,1989,18(2):341.
[50] Lipton J;Glicksman M E;Kurz W .Dendritic growth into undercoolod alloy melts[J].Material Science and Engineering,1984,65:57.
[51] Kurz W;Giovanola B;Trivedi R .Theory of microstructural development during rapid solidification[J].Acta Metall,1986,34(5):823.
[52] 王智平,王宝成,肖荣振,冯力,朱昶胜.Si-Ni合金中小晶面枝晶生长的相场法模拟?[J].功能材料,2014(18):18042-18046.
[53] 任磊 .自动元胞机原理在单层网壳结构形态优化中的应用[D].天津大学,2011.
[54] 王超,朱立光.氧化物冶金技术及应用[J].河北理工大学学报(自然科学版),2011(02):18-23.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%