欢迎登录材料期刊网

材料期刊网

高级检索

近年来,高速列车、汽车、航天器中的核心工程构件承受的疲劳循环已达108~1010周次甚至更高.目前的研究结果表明,高强钢材料在10 7周次以上的超高周疲劳阶段内仍会发生疲劳断裂,不存在传统的疲劳极限.因此,研究高强钢的超高周疲劳特性不仅有助于理解疲劳机理,而且有利于研究材料超高周疲劳设计及寿命评估方法.论述了高强钢超高周疲劳研究的背景和意义,介绍了近几年超高周疲劳的研究成果,包括S-N曲线的特征、裂纹萌生特征和扩展机理、断面上鱼眼形貌等,并给出了未来超高周疲劳的研究方向.

参考文献

[1] Sakai T .Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use[J].J Solid Mech Mater Eng,2009(3):425.
[2] Marines I;Bin X;Bathias C .An understanding of very high cycle fatigue of metals[J].International Journal of Fatigue,2003,25:1101.
[3] Stanzl-Tschegg S E;Mayer H;Stich A .Variable amplitude loading in the very high-cycle fatigue regime[J].Fatigue and fracture of engineering materials and structures,2002,25:887.
[4] Tanaka K;Akiniwa Y .Fatigue crack propagation behavior derived from S-N data in very high cycle regime[J].Fatigue and fracture of engineering materials and structures,2002,25:775.
[5] Nishijima S;Kanazawa K .Stepwise S-N curve and fish-eye failure in gigacycle fatigue[J].Fatigue and fracture of engineering materials and structures,1999,22:601.
[6] Masuda C;Nishijima S;Tanaka Y .Relationship between fatigue strength and hardness for high strength steels[J].Trans JSME,1986,52A:847.
[7] Murakami Y;Yokoyama N N;Nagata J .Mechanism of fatigue failure in ultralong life regime[J].Fatigue and fracture of engineering materials and structures,2002,25:735.
[8] Mughrabi H .Special features and mechanisms of fatigue in the ultrahigh-cycle regime[J].International Journal of Fatigue,2006,28:1501.
[9] Chapetti M F;Tagawa T;Miyata T .Ultra-long cycle fatigue of high-strength carbon steels part Ⅰ:Review and analysis of the mechanism of failure[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2003,356:227.
[10] Terent'ev V F .Endurance limit of metals and alloys[J].Metal Sci Heat Treat,2008,50:88.
[11] 王弘,高庆.40Cr钢超高周疲劳性能及疲劳断口分析[J].中国铁道科学,2003(06):93-98.
[12] Chai G .The formation of subsurface non-defect fatigue crack origins[J].International Journal of Fatigue,2006,28:1533.
[13] Mughrabi H .Damage mechanism and fatigue lives:From the low to the very high cycle regime[J].Procedia Eng,2013,55:636.
[14] Khan M K;Wang Q Y .Investigation of crack initiation and propagation behavior of AISI/3 stainless steel up to very high cycle fatigue[J].International Journal of Fatigue,2013,54:38.
[15] Bathias C .There is no infinite fatigue life in metallic materials[J].Fatigue and fracture of engineering materials and structures,1999,22:559.
[16] Murakami Y;Nomotomo T;Ueda T et al.On the mechanism of fatigue failure in the superlong life regime(N》 107cycles).Part Ⅰ:Influence of hydrogen trapped by inclusions[J].Fatigue and fracture of engineering materials and structures,2000,23:893.
[17] Murakami Y;Nomotomo T;Ueda T et al.On the mechanism of fatigue failure in the superlong life regime(N》107cycles).Part Ⅱ:A fractographic investigation[J].Fatigue and fracture of engineering materials and structures,2000,23:903.
[18] Shiozawa K;Lu L;Ishihara S .S-N curve characteristics and subsurface crack initiation behavior in ultra-long life of a high carbon-chromium bearing steel[J].Fatigue and fracture of engineering materials and structures,2001,24:781.
[19] Sakai T;Sato Y;Oguma N .Characteristic S-N properties of high carbon-chromium-bearing steel under axial loading in long-life fatigue[J].Fatigue and fracture of engineering materials and structures,2002,25:765.
[20] 聂义宏,惠卫军,傅万堂,翁宇庆,董瀚.中碳高强度弹簧钢NHS1超高周疲劳破坏行为[J].金属学报,2007(10):1031-1036.
[21] Yang Z G;Li S X;Liu Y B et al.Estimation of the size of GBF area on fracture surface for high strength steels in very high cycle fatigue regime[J].International Journal of Fatigue,2008,30:1016.
[22] 顾玉丽,陶春虎,何玉怀,胡春燕,滕旭东.金属材料超高周疲劳失效的基本特征[J].失效分析与预防,2011(03):193-198.
[23] Miller K J;O'Donnell W J .The fatigue limit and its elimination[J].Fatigue and fracture of engineering materials and structures,1999,22:545.
[24] Chai, G.;Zhou, N. .Study of crack initiation or damage in very high cycle fatigue using ultrasonic fatigue test and microstructure analysis[J].Ultrasonics,2013(8):1406-1411.
[25] Suh, M.-S.;Suh, C.-M.;Pyun, Y.-S. .Very high cycle fatigue characteristics of a chrome-molybdenum steel treated by ultrasonic nanocrystal surface modification technique[J].Fatigue & Fracture of Engineering Materials and Structures,2013(8):769-778.
[26] Tr(s)ko L;Bokuvka O;Novy F et al.Effect of severe shot peening on ultra-high-cycle fatigue of a low-alloy steel[J].Materials and Design,2014,57:103.
[27] 黄志勇,王清远.低铬合金钢的超高周疲劳行为和裂纹扩展路径分析[J].四川大学学报:工程科学版,2012(05):195-199.
[28] Li W;Sakai T;Li Q et al.Reliability evaluation on very high cycle fatigue property of GCr15 bearing steel[J].International Journal of Fatigue,2010,32:1096.
[29] YOUSHI HONG;AlGUO ZHAO;GUIAN QIAN .Fatigue Strength and Crack Initiation Mechanism of Very-High-Cycle Fatigue for Low Alloy Steels[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2012(8):2753-2762.
[30] V. Kazymyrovych;J. Bergstrom;C. Burman .The Significance of Crack Initiation Stage in Very High Cycle Fatigue of Steels[J].Steel Research International,2010(4):308-314.
[31] Mughrabi H .On the life-controlling microstructural fatiguemechanisms in ductile metals and alloys in the gigacycle regime[J].Fatigue and fracture of engineering materials and structures,1999,22:633.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%