采用基于密度泛函理论框架下的第一性原理,研究石墨烯与Ge衬底之间的界面结构.计算结果表明,在3种衬底Ge(111)、Ge(100)和Ge(110)上界面结合能有相同的规律,均在平衡距离为3.3A时获得最低能量,平均每个碳原子的界面结合能分别为24.3 meV、21.1 meV和23.3 meV;通过构造0~60°之间不同的界面夹角,发现一个高对称性的界面结构;相比本征Ge衬底,石墨烯与H钝化后Ge衬底之间的界面平衡距离增大,结合能降低;H钝化能有效地屏蔽石墨烯与Ge衬底之间的相互作用,恢复了本征石墨烯的电子性质,起到缓冲层作用.
参考文献
[1] | Novoselov K S;Geim A K;Morozov S V et al.Electric field effect in atomically thin carbon films[J].SCIENCE,2004,306(5696):666. |
[2] | Geim AK;Novoselov KS .The rise of graphene[J].Nature materials,2007(3):183-191. |
[3] | Geim A K .Graphene:Status and prospects[J].SCIENCE,2009,324(5934):1530. |
[4] | Zhang Y B;Tan Y W;Stormer H L et al.Experimental observation of the quantum Hall effect and Berry's phase in graphene[J].NATURE,2005,438(7065):201. |
[5] | Wang G;Zhang M;Zhu Y et al.Direct growth of graphene film on germanium substrate[J].Sci Rep,2013,3:2465. |
[6] | Lee J;Lee E K;JooW et al.Wafer scale growth of single crystal monolayer grapheme on reusable hydrogen terminated germanium[J].SCIENCE,2014,344(6181):286. |
[7] | Xu, Z.;Buehler, M.J. .Interface structure and mechanics between graphene and metal substrates: A first-principles study[J].Journal of Physics. Condensed Matter,2010(48):485301-1-485301-5. |
[8] | Giovannetti G;Khomyakov PA;Brocks G;Kelly PJ;van den Brink J .Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations[J].Physical review, B. Condensed matter and materials physics,2007(7):3103-1-3103-4-0. |
[9] | Mattausch A;Pankratov O .Ab initio study of graphene on SiC[J].Physical review letters,2007(7):6802-1-6802-4-0. |
[10] | Kang YJ;Kang J;Chang KJ .Electronic structure of graphene and doping effect on SiO2[J].Physical review, B. Condensed matter and materials physics,2008(11):115404-1-115404-5-0. |
[11] | Philip Shemella;Saroj K. Nayak .Electronic structure and band-gap modulation of graphene via substrate surface chemistry[J].Applied physics letters,2009(3):032101-1-032101-3-0. |
[12] | Xu, Y.;He, K.T.;Schmucker, S.W.;Guo, Z.;Koepke, J.C.;Wood, J.D.;Lyding, J.W.;Aluru, N.R. .Inducing electronic changes in graphene through silicon (100) substrate modification[J].Nano letters,2011(7):2735-2742. |
[13] | Blochl P E .Projector augmented-wave method[J].Physical Review B:Condensed Matter,1994,50(24):17953. |
[14] | Kresse G.;Joubert D. .From ultrasoft pseudopotentials to the projector augmented-wave method[J].Physical Review.B.Condensed Matter,1999(3):1758-1775. |
[15] | Kresse G.;Furthmuller J. .EFFICIENT ITERATIVE SCHEMES FOR AB INITIO TOTAL-ENERGY CALCULATIONS USING A PLANE-WAVE BASIS SET[J].Physical Review.B.Condensed Matter,1996(16):11169-11186. |
[16] | G. Kresse;J. Furthmuller .Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J].Computational Materials Science,1996(1):15-50. |
[17] | Ceperley D M;Alder B J .Ground state of the electron gas by a stochastic method[J].Physical Review Letters,1980,45(7):566. |
[18] | Perdew J P;Burke K;Ernzerhof M .Generalized gradient approximation made simple[J].Physical Review Letters,1997,77(18):3865. |
[19] | Grimme S .Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J].Journal of Computational Chemistry: Organic, Inorganic, Physical, Biological,2006(15):1787-1799. |
[20] | Jiri Klimes;David R. Bowler;Angelos Michaelides .Van derWaals density functionals applied to solids[J].Physical review, B. Condensed matter and materials physics,2011(19):195131:1-195131:13. |
[21] | Cavallo F;Delgado R R;Kelly M M et al.Exceptional charge transport properties of graphene on germanium[J].ACS Nano,2014,8(10):10237. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%