欢迎登录材料期刊网

材料期刊网

高级检索

采用基于密度泛函理论框架下的第一性原理,研究石墨烯与Ge衬底之间的界面结构.计算结果表明,在3种衬底Ge(111)、Ge(100)和Ge(110)上界面结合能有相同的规律,均在平衡距离为3.3A时获得最低能量,平均每个碳原子的界面结合能分别为24.3 meV、21.1 meV和23.3 meV;通过构造0~60°之间不同的界面夹角,发现一个高对称性的界面结构;相比本征Ge衬底,石墨烯与H钝化后Ge衬底之间的界面平衡距离增大,结合能降低;H钝化能有效地屏蔽石墨烯与Ge衬底之间的相互作用,恢复了本征石墨烯的电子性质,起到缓冲层作用.

参考文献

[1] Novoselov K S;Geim A K;Morozov S V et al.Electric field effect in atomically thin carbon films[J].SCIENCE,2004,306(5696):666.
[2] Geim AK;Novoselov KS .The rise of graphene[J].Nature materials,2007(3):183-191.
[3] Geim A K .Graphene:Status and prospects[J].SCIENCE,2009,324(5934):1530.
[4] Zhang Y B;Tan Y W;Stormer H L et al.Experimental observation of the quantum Hall effect and Berry's phase in graphene[J].NATURE,2005,438(7065):201.
[5] Wang G;Zhang M;Zhu Y et al.Direct growth of graphene film on germanium substrate[J].Sci Rep,2013,3:2465.
[6] Lee J;Lee E K;JooW et al.Wafer scale growth of single crystal monolayer grapheme on reusable hydrogen terminated germanium[J].SCIENCE,2014,344(6181):286.
[7] Xu, Z.;Buehler, M.J. .Interface structure and mechanics between graphene and metal substrates: A first-principles study[J].Journal of Physics. Condensed Matter,2010(48):485301-1-485301-5.
[8] Giovannetti G;Khomyakov PA;Brocks G;Kelly PJ;van den Brink J .Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations[J].Physical review, B. Condensed matter and materials physics,2007(7):3103-1-3103-4-0.
[9] Mattausch A;Pankratov O .Ab initio study of graphene on SiC[J].Physical review letters,2007(7):6802-1-6802-4-0.
[10] Kang YJ;Kang J;Chang KJ .Electronic structure of graphene and doping effect on SiO2[J].Physical review, B. Condensed matter and materials physics,2008(11):115404-1-115404-5-0.
[11] Philip Shemella;Saroj K. Nayak .Electronic structure and band-gap modulation of graphene via substrate surface chemistry[J].Applied physics letters,2009(3):032101-1-032101-3-0.
[12] Xu, Y.;He, K.T.;Schmucker, S.W.;Guo, Z.;Koepke, J.C.;Wood, J.D.;Lyding, J.W.;Aluru, N.R. .Inducing electronic changes in graphene through silicon (100) substrate modification[J].Nano letters,2011(7):2735-2742.
[13] Blochl P E .Projector augmented-wave method[J].Physical Review B:Condensed Matter,1994,50(24):17953.
[14] Kresse G.;Joubert D. .From ultrasoft pseudopotentials to the projector augmented-wave method[J].Physical Review.B.Condensed Matter,1999(3):1758-1775.
[15] Kresse G.;Furthmuller J. .EFFICIENT ITERATIVE SCHEMES FOR AB INITIO TOTAL-ENERGY CALCULATIONS USING A PLANE-WAVE BASIS SET[J].Physical Review.B.Condensed Matter,1996(16):11169-11186.
[16] G. Kresse;J. Furthmuller .Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J].Computational Materials Science,1996(1):15-50.
[17] Ceperley D M;Alder B J .Ground state of the electron gas by a stochastic method[J].Physical Review Letters,1980,45(7):566.
[18] Perdew J P;Burke K;Ernzerhof M .Generalized gradient approximation made simple[J].Physical Review Letters,1997,77(18):3865.
[19] Grimme S .Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J].Journal of Computational Chemistry: Organic, Inorganic, Physical, Biological,2006(15):1787-1799.
[20] Jiri Klimes;David R. Bowler;Angelos Michaelides .Van derWaals density functionals applied to solids[J].Physical review, B. Condensed matter and materials physics,2011(19):195131:1-195131:13.
[21] Cavallo F;Delgado R R;Kelly M M et al.Exceptional charge transport properties of graphene on germanium[J].ACS Nano,2014,8(10):10237.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%