欢迎登录材料期刊网

材料期刊网

高级检索

采用悬臂梁弯曲应力松弛测试方法对CuNiSiCo合金的应力松弛性能进行了测试,利用TEM探究Co对CuNiSi合金应力松弛组织的影响,并建立了应力松弛模型.结果表明,应力松弛过程可动位错密度是降低的经验公式σ*=[K'ln(t+-ao)+C]-n的模拟结果,与实验结果基本相符;合金松弛分为2个阶段,第一阶段应力松弛速率较大,由于在应力松弛的初期阶段,可动位错数量很多,位错移动的阻力比较小,位错移动的驱动力比较大;第二阶段,应力松弛速率较小,处于缓慢松弛阶段,这一阶段位错与杂质原子以及位错与第二相粒子发生交互作用,使位错增殖;Co在Cu中的固溶度较小且易于与空位结合,从而抑制了调幅分解形成所需的空位移动,致使含Co元素的Cu-Ni-Co-Si铜合金空位大量减少,抑制了可动位错的滑移;另一方面,促进了基体中析出相的析出,析出相弥散均匀地分布在合金基体中,在发生应力松弛过程中,移动的可动位错在遇到弥散分布的第二相之后,会被第二相所钉扎,故Co替代部分Ni形成的CuNiSiCo合金的应力松弛性能要优于CuNiSi合金.

参考文献

[1] Chandler, H.D. .A comparison between steady state creep and stress relaxation in copper[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2010(23):6219-6223.
[2] Parikin.Stress relaxation testing[M].ASTM,1979:48.
[3] 李忆莲.铍青铜的应力松弛性能及组织[J].中国有色金属学报,1993(01):62-65.
[4] Chen J F;Jiang J T;Zhen L et al.Stress relaxation behavior of an Al-Zn-Mg-Cu alloy in simulated age-forming process[J].Journal of Materials Processing Technology,2014,214:775.
[5] Xu X X;San X Y;Gong Y L et al.Studies on strength and ductility of Cu-Zn alloys by stress relaxation[J].Materials and Design,2013,47:295.
[6] Hu T;Chen J H;Liu J Z et al.The crystallographic and morphological evolution of the strengthening precipitates in Cu-Ni-Si alloys[J].ACTA MATERIALIA,2013,61:1210.
[7] Yasuhiro Aruga;Yoshiki Morikawa;Satoshi Tamaoka .Internal friction study of the stress relaxation behavior in Cu-Ni-P alloys[J].Scripta materialia,2012(9):686-689.
[8] 张新明,毛新平,邓至谦,范波,周卓平,曹金荣.铍铜带材弯曲应力松弛的力学行为[J].中国有色金属学报,2001(06):988-992.
[9] Jia Yan-lin;Wang Ming-pu;Chen Chang.Orientation and diffraction patterns of δ-Ni_2Si precipitates in Cu-Ni-Si alloy[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2013:147-151.
[10] Xiao Xiangpeng;Xiong Baiqing et al.Effect of thermomechanical treatments on microstructure and properties of CuNiSiZr alloy[J].RARE METALS,2013,32(2):144.
[11] Xiang-Peng Xiao,Bai-Qing Xiong,Guo-Jie Huang,Lei Cheng,Li-Jun Peng,Qi-Ming Liang.Microstructure and properties of Cu-2.8Ni-0.6Si alloy[J].稀有金属(英文版),2013(03):228-233.
[12] S. Chenna Krishna;J. Srinath;Abhay K. Jha;Bhanu Pant;S. C. Sharma;Koshy M. George .Microstructure and Properties of a High-Strength Cu-Ni-Si-Co-Zr Alloy[J].Journal of Materials Engineering and Performance,2013(7):2115-2120.
[13] Hu T;Chen J H;Liu J Z et al.The crystallographic and morphological evolution of the strengthening precipitates in Cu-Ni-Si alloys[J].ACTA MATERIALIA,2013,61:1210.
[14] Lei Q;Li Z;Xiao T et al.A new ultrahigh strength CuNiSi alloy[J].INTERMETALLICS,2013,42:77.
[15] Povarov I A .Stress relaxation in structural titanium alloys[J].Metal Sci Heat Treatment,1982,22(5):433.
[16] Mori T .Diffusional relaxation around a second phase particle[J].Acta Metall,1980,28:319.
[17] Onaka S .Kinetics of stress relaxation caused by the combination of interfacial sliding and diffusiong:Two-dimensional analysis[J].ACTA MATERIALIA,1998,46(11):3821.
[18] 周民杰,罗炳池,李恺,张继成,李佳,吴卫东.Cu掺杂对Be薄膜微结构的影响[J].中国有色金属学报,2012(05):1151-1155.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%