欢迎登录材料期刊网

材料期刊网

高级检索

轻量化技术已成为汽车实现节能、减排的重要途径,碳纤维复合材料为汽车轻量化提供了重要材料基础。由于材料特性与制造工艺的特殊性与复杂性,采用碳纤维复合材料实现汽车轻量化时需要克服多项关键技术。结合汽车产品特点,从低成本碳纤维技术、材料-结构-性能一体化技术、高效成型技术、多材料连接技术、循环利用技术几个方面阐述了碳纤维复合材料在汽车轻量化应用中的关键技术,展望了未来汽车用碳纤维复合材料的发展趋势。

Lightweight has become an important way to achieve energy saving and emission reduction for auto-mobile and carbon fiber-reinforced plastics (CFRP)has provided a significant material foundation for automobile ligh-tening.Due to particularity and complexity of material properties and manufacturing processes,the application of CFRP to vehicle lightening still faces several crucial technological challenges.In this paper,the key technologies aimed at these issues,including low cost carbon fiber,structure-function integration,highly efficient molding,multi-mate-rial connection,and recycling,are analyzed and summarized combining with the automobile features.The future de-velopment prospect of CFRP for automobile application is also put forward.

参考文献

[1] 范子杰;桂良进;苏瑞意.汽车轻量化技术的研究与进展[J].汽车安全与节能学报,2014(1):1-16.
[2] Baker, D.A.;Rials, T.G..Recent advances in low-cost carbon fiber manufacture from lignin (Review)[J].Journal of Applied Polymer Science,20132(2):713-728.
[3] Liu, Y.;Kumar, S..Recent progress in fabrication, structure, and properties of carbon fibers[J].Polymer reviews,20123/4(3/4):234-258.
[4] Chuilin Lai;Zhengping Zhou;Lifeng Zhang;Xiaoxu Wang;Qixin Zhou;Yong Zhao;Yechun Wang;Xiang-Fa Wu;Zhengtao Zhu;Hao Fong.Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors[J].Journal of Power Sources,2014Feb.1(Feb.1):134-141.
[5] Meng Zhang;Amod A. Ogale.Carbon fibers from dry-spinning of acetylated softwood kraft lignin[J].Carbon: An International Journal Sponsored by the American Carbon Society,2014:626-629.
[6] Ten, Elena;Vermerris, Wilfred.Recent developments in polymers derived from industrial lignin[J].Journal of Applied Polymer Science,201523/24(23/24)
[7] Younker, J.M.;Saito, T.;Hunt, M.A.;Naskar, A.K.;Beste, A..Pyrolysis pathways of sulfonated polyethylene, an alternative carbon fiber precursor[J].Journal of the American Chemical Society,201316(16):6130-6141.
[8] Zhang D.;Sun Q..STRUCTURE AND PROPERTIES DEVELOPMENT DURING THE CONVERSION OF POLYETHYLENE PRECURSORS TO CARBON FIBERS[J].Journal of Applied Polymer Science,19962(2):367-373.
[9] Amit K. Naskar;Robert A. Walker;Sarah Proulx.UV assisted stabilization routes for carbon fiber precursors produced from melt-processible polyacrylonitrile terpolymer[J].Carbon: An International Journal Sponsored by the American Carbon Society,20055(5):1065-1072.
[10] 韩克清;严斌;田银彩;荣怀萍;余木火.碳纤维及其复合材料高效低成本制备技术进展[J].中国材料进展,2012(10):30-36.
[11] YUAN Huiwu;ANG Yuansheng;U Hongwei;EI Zheng;E Bao;EI Yongjia.Effect of UV Irradiation on PAN Precursor Fibers and Stabilization Process[J].武汉理工大学学报(材料科学版)(英文版),2011(3):449-454.
[12] Yuan, H.;Wang, Y.;Liu, P.;Yu, H.;Ge, B.;Mei, Y..Effect of electron beam irradiation on polyacrylonitrile precursor fibers and stabilization process[J].Journal of Applied Polymer Science,20111(1):90-96.
[13] Lianjiang Tan;Ajun Wan.Structural changes of polyacrylonitrile precursor fiber induced by y-ray irradiation[J].Materials Letters,201119/20(19/20):3109-3111.
[14] Jing M;Wang CG;Zhu B;Wang YX;Gao XP;Chen WN.Effects of preoxidation and carbonization technologies on tensile strength of PAN-based carbon fiber[J].Journal of Applied Polymer Science,20082(2):1259-1264.
[15] Hou YP;Sun TQ;Wang HJ;Wu D.Influence of ozone on chemical reactions during the stabilization of polyacrylonitrile as a carbon fiber precursor[J].Journal of Applied Polymer Science,20086(6):3990-3996.
[16] 罗云烽;孙永春;段跃新;肇研.大丝束碳纤维薄层化技术[J].复合材料学报,2010(1):123-128.
[17] Sangwook Sihn;Ran Y. Kim;Kazumasa Kawabe;Stephen W. Tsai.Experimental studies of thin-ply laminated composites[J].Composites science and technology,20076(6):996-1008.
[18] Song, Jun Hee.Pairing effect and tensile properties of laminated high-performance hybrid composites prepared using carbon/glass and carbon/aramid fibers[J].Composites, Part B. Engineering,2015Sep.(Sep.):61-66.
[19] 黄虹;明浩;王选伦;李道喜;李能文.碳纤维/空心玻璃微珠/聚丙烯三元复合体系的制备及力学性能研究[J].塑料科技,2012(4):69-72.
[20] Jin Zhang;Khunlavit Chaisombat;Shuai He;Chun H. Wang.Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures[J].Materials & design,2012Apr.(Apr.):75-80.
[21] Meisam Jalalvand;Gergely Czel;Michael R. Wisnom.Numerical modelling of the damage modes in UD thin carbon/glass hybrid laminates[J].Composites science and technology,2014Apr.9(Apr.9):39-47.
[22] Kim, Do-Hyoung;Kim, Hyun-Gyung;Kim, Hak-Sung.Design optimization and manufacture of hybrid glass/carbon fiber reinforced composite bumper beam for automobile vehicle[J].Composite structures,2015Nov.(Nov.):742-752.
[23] M.R. Bambach.Fibre composite strengthening of thin-walled steel vehicle crush tubes for frontal collision energy absorption[J].Thin-Walled structures,2013May(May):15-22.
[24] M.R. Bambach.Fibre composite strengthening of thin steel passenger vehicle roof structures[J].Thin-Walled structures,2014Jan.(Jan.):1-11.
[25] Qiang Liu;Yongzhou Lin;Zhijian Zong;Guangyong Sun;Qing Li.Lightweight design of carbon twill weave fabric composite body structure for electric vehicle[J].Composite structures,2013Mar.(Mar.):231-238.
[26] 杜善义.先进复合材料与航空航天[J].复合材料学报,2007(01):1-12.
[27] 邢丽英;蒋诗才;周正刚.先进树脂基复合材料制造技术进展[J].复合材料学报,2013(2):1-9.
[28] C.R. Wang;Y.Z. Gu;K.M. Zhang.Rapid Curing Epoxy Resin and its Application in Carbon Fibre Composite Fabricated Using VARTM Moulding[J].Polymers & Polymer Composites,20135(5):315-323.
[29] 张靠民;顾轶卓;李敏;王超然;张佐光.快速固化环氧树脂及其碳纤维/环氧复合材料性能[J].复合材料学报,2013(6):21-27.
[30] Moon Koo Kang;Jae Joon Jung;Wool Il Lee.Analysis of resin transfer moulding process with controlled multiple gates resin injection[J].Composites, Part A. Applied science and manufacturing,20005(5):407-422.
[31] Shojaei A.;Ghaffarian SR.;Karimian SMH..Numerical analysis of controlled injection strategies in resin transfer molding[J].Journal of Composite Materials,200311(11):1011-1035.
[32] Han, Song Hee;Cho, Eun Jeong;Lee, Hyun Chul;Jeong, Kun;Kim, Seong Su.Study on high-speed RTM to reduce the impregnation time of carbon/epoxy composites[J].Composite structures,2015Jan.(Jan.):50-58.
[33] Justin B. Alms;Suresh G. Advani;James L Glancey.Liquid Composite Molding control methodologies using Vacuum Induced Preform Relaxation[J].Composites, Part A. Applied science and manufacturing,20111(1):57-65.
[34] Reinforced Plastics Group.Lightweight automotive design with HP-RTM[J].Reinforced Plastics,20115(5):29-31.
[35] M. Deleglise;C. Binetray;P. Krawczak.Simulation of LCM processes involving indeced or forced deformations[J].Composites, Part A. Applied science and manufacturing,20066(6):874-880.
[36] Genevieve Palardy;Pascal Hubert;Eduardo Ruiz;Mohsan Haider;Larry Lessard.Numerical simulations for class A surface finish in resin transfer moulding process[J].Composites, Part B. Engineering,20122(2):819-824.
[37] Hansong Huang;Ramesh Talreja.Effects of void geometry on elastic properties of unidirectional fiber reinforced composites[J].Composites science and technology,200513(13):1964-1981.
[38] Chung Hae Park;Woo Il Lee.Modeling void formation and unsaturated flow In liquid composite molding processes: a survey and review[J].Journal of Reinforced Plastics and Composites,201111(11):957-977.
[39] Doh Hoon Lee;Woo II Lee;Moon Koo Kang.Analysis and minimization of void formation during resin transfer molding process[J].Composites science and technology,200616(16):3281-3289.
[40] C. DeValve;R. Pitchumani.Simulation of void formation in liquid composite molding processes[J].Composites, Part A. Applied science and manufacturing,2013:22-32.
[41] Staffan Lundstrom;Vilnis Frishfelds;Andris Jakovics.Bubble formation and motion in non-crimp fabrics with perturbed bundle geometry[J].Composites, Part A. Applied science and manufacturing,20101(1):83-92.
[42] Yang, Bo;Jin, Tianguo;Bi, Fengyang;Wei, Yajun;Li, Jianguang.Influence of fabric shear and flow direction on void formation during resin transfer molding[J].Composites, Part A. Applied science and manufacturing,2015:10-18.
[43] Guzman-Maldonado, E.;Hamila, N.;Boisse, P.;Bikard, J..Thermomechanical analysis, modelling and simulation of the forming of pre-impregnated thermoplastics composites[J].Composites, Part A. Applied science and manufacturing,2015:211-222.
[44] S.P. Haanappel;R.H.W. ten Thije;U. Sachs.Formability analyses of uni-directional and textile reinforced thermoplastics[J].Composites, Part A. Applied science and manufacturing,2014:80-92.
[45] S. Allaoui;P. Boisse;S. Chatel.Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape[J].Composites, Part A. Applied science and manufacturing,20116(6):612-622.
[46] P. Hallander;M. Akermo;C. Mattel.An experimental study of mechanisms behind wrinkle development during forming of composite laminates[J].Composites, Part A. Applied science and manufacturing,2013:54-64.
[47] Lessard, Hugues;Lebrun, Gilbert;Benkaddour, Abdelhaq;Xuan-Tan Pham.Influence of process parameters on the thermostamping of a [0/90](12) carbon/polyether ether ketone laminate[J].Composites, Part A. Applied science and manufacturing,2015:59-68.
[48] 李永兵;李亚庭;楼铭;林忠钦.轿车车身轻量化及其对连接技术的挑战[J].机械工程学报,2012(18):44-54.
[49] Jingchao Wei;Guiqiong Jiao;Purong Jia;Tao Huang.The effect of interference fit size on the fatigue life of bolted joints in composite laminates[J].Composites, Part B. Engineering,2013Oct.(Oct.):62-68.
[50] Zhai, Yunong;Li, Dongsheng;Li, Xiaoqiang;Wang, Liang;Yin, Yu.An experimental study on the effect of bolt-hole clearance and bolt torque on single-lap, countersunk composite joints[J].Composite structures,2015Sep.(Sep.):411-419.
[51] A.J. Comer;J.X. Dhote;W.F. Stanley;T.M. Young.Thermo-mechanical fatigue analysis of liquid shim in mechanically fastened hybrid joints for aerospace applications[J].Composite structures,20127(7):2181-2187.
[52] Kapidzic, Zlatan;Ansell, Hans;Schon, Joakim;Simonsson, Kjell.Fatigue bearing failure of CFRP composite in biaxially loaded bolted joints at elevated temperature[J].Composite structures,2015Sep.(Sep.):298-307.
[53] Tien-Cuong Nguyen;Yu Bai;Xiao-Ling Zhao;Riadh Al-Mahaidi.Mechanical characterization of steel/CFRP double strap joints at elevated temperatures[J].Composite structures,20116(6):1604-1612.
[54] Tien-Cuong Nguyen;Yu Bai;Xiao-Ling Zhao;Riadh Al-Mahaidi.Effects of ultraviolet radiation and associated elevated temperature on mechanical performance of steel/CFRP double strap joints[J].Composite structures,201212(12):3563-3573.
[55] Korta, Jakub;Mlyniec, Andrzej;Uhl, Tadeusz.Experimental and numerical study on the effect of humidity-temperature cycling on structural multi-material adhesive joints[J].Composites, Part B. Engineering,2015Sep.(Sep.):621-630.
[56] Oliveux, Geraldine;Dandy, Luke O.;Leeke, Gary A..Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties[J].Progress in materials science,2015Jul.(Jul.):61-99.
[57] George Marsh.Reclaiming value from post-use carbon composite[J].Reinforced Plastics,20087(7):36-39.
[58] Soraia Pimenta;Silvestre T. Pinho.Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook[J].Waste Management,20112(2):378-392.
[59] L.O. MEYER;K. SCHUL'FE;E. GROVE-NIELSEN.CFRP-Recycling Following a Pyrolysis Route: Process Optimization and Potentials[J].Journal of Composite Materials,20099(9):1121-1132.
[60] Vicki P. McConnell.Launching the carbon fibre recycling industry[J].Reinforced Plastics,20102(2):33-37.
[61] Dan Akesson;Zenon Foltynowicz;Jonas Christeen.Microwave pyrolysis as a method of recycling glass fibre from used blades of wind turbines[J].Journal of Reinforced Plastics and Composites,201217(17):1136-1142.
[62] Characterisation Of Carbon Fibres Recycled From Carbon Fibre/epoxy Resin Composites Using Supercritical N-propanol[J].Composites science and technology,20092(2):p.192.
[63] Yongping Bai.Chemical recycling of carbon fibers reinforced epoxy resin composites in oxygen in supercritical water[J].Materials & design,20102(2):999-1002.
[64] SJ. Pickering.Recycling technologies for thermoset composite materials-current status[J].Composites, Part A. Applied science and manufacturing,20068(8):1206-1215.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%