欢迎登录材料期刊网

材料期刊网

高级检索

氢化碳化硅薄膜作为一种宽带隙的半导体材料,具有优越的物理特性,其在光电子器件上的潜在应用引起了人们的兴趣。利用等离子增强化学气相沉积(PECVD)系统制备了一系列氢化碳化硅薄膜,通过改变反应前驱物及流量比调节薄膜的室温光致发光性质。实验发现在一定范围内随着流量比 R (CH4/SiH4)的提高,氢化碳化硅薄膜的光致发光峰位蓝移且发光强度增强;同时反应前驱物中的氢会极大影响氢化碳化硅薄膜的发光强度。通过椭偏仪(Ellipsometer)测量了薄膜的光学常数,发现薄膜沉积速率随着流量比 R 的增加而降低;傅里叶红外光谱仪(FTIR)测试表明 Si-C 有序度随着流量比的增加而增大。同时研究了三维纳米线结构对多态碳化硅薄膜发光性质的影响。光致发光测试结果表明三维纳米线结构可以有效提高薄膜的光致发光强度。

Hydrogenated silicon-carbon thin film (Six C1 -x ∶ H),as a wide-band semiconductor material,has very promising applications in opto-electronic areas.Series of Six C1 -x ∶ H films were prepared by using plasma-en-hanced chemical vapor deposition system (PECVD).By increasing the flux ratio of the gas source (R=CH4/SiH4 ),it is found that the peak position of the PL blue-shifts and PL intensity photoluminescence to the decrease in the size of Si nanoparticles (nc-Si)embedded in the matrix and the increase in the numbers of nc-Si.The precursor H 2 has influence on the PL intensity as the presence of H 2 can boost the nucleation and growth of the nc-Si.The optical properties of the films were analyzed by Ellipsometry and FTIR measurement.Importantly,3D nanowire structure of the film greatly enhanced the PL intensity,which provides another way to improve the PL efficiency.These results are funda-mentals for study on Si based opto-electronics.

参考文献

[1] 于威;何杰;孙运涛;朱海丰;韩理;傅广生.碳化硅薄膜脉冲激光晶化特性研究[J].物理学报,2004(6):1930-1934.
[2] 杨昱桢;向道平;吕鑫禹;丁雷;潘艳林.晶硅切割废料在碳化硅及其复合材料中的应用进展[J].材料导报,2015(3):49-54.
[3] Junzhuan Wang;Linwei Yu;Sergey Abolmasov;Ka Hyun Kim;Pere Roca i Cabarrocas.Strong visible and near-infrared electroluminescence and formation process in Si-rich polymorphous silicon carbon[J].Journal of Applied Physics,20125(5):053108-1-053108-4.
[4] I. Stenger;A. Abramov;C. Barthou;Th. Nguyen-Tran;A. Frigout;P. Roca i Cabarrocas.Strong orange/red electroluminescence from hydrogenated polymorphous silicon carbon light-emitting devices[J].Applied physics letters,200824(24):241114-1-241114-3-0.
[5] 于威;杜洁;张丽;崔双魁;路万兵;傅广生.氢流量对纳米SiC薄膜微结构和光学特性的影响[J].无机材料学报,2008(3):540-544.
[6] S. Kerdiles;A. Berthelot;F. Gourbilleau.Low temperature deposition of nanocrystalline silicon carbide thin films[J].Applied physics letters,200017(17):2373-2375.
[7] Rovira PI.;Alvarez F..CHEMICAL (DIS)ORDER IN A-SI1-XCX-H FOR X-LESS-THAN-0.6[J].Physical Review. B, Condensed Matter,19977(7):4426-4434.
[8] 宋超;孔令德.非晶碳化硅薄膜的结构及其光学特性研究[J].红外技术,2011(9):509-511.
[9] Yu LW;Alet PJ;Picardi G;Maurin I;Cabarrocas PRI.Synthesis, morphology and compositional evolution of silicon nanowires directly grown on SnO2 substrates[J].Nanotechnology,200848(48):485605-1-485605-5-0.
[10] Linwei Yu;Benedict O'Donnell;Pierre-Jean Alet;S Conesa-Boj;F Peiró;J Arbiol;Pere Roca i Cabarrocas.Plasma-enhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts[J].Nanotechnology,200922(22):225604-5.
[11] Cao L;Garipcan B;Gallo EM;Nonnenmann SS;Nabet B;Spanier JE.Excitation of local field enhancement on silicon nanowires[J].Nano letters,20082(2):601-605.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%