欢迎登录材料期刊网

材料期刊网

高级检索

集热器作为平板太阳能热水器的关键部分,其传热性能决定着热水器集热效率的高低。介绍了平板太阳能集热器的典型结构以及传热方式,综述了平板太阳能集热器目前所采用的强化传热方式及今后强化传热技术的发展趋势。

As the key part of the flat-plate solar water heater,the heat transfer performance of the collector is determined by the heat collector efficiency.The flat-plate solar collector with typical structure and heat transfer mode are described.Meanwhile the present technologies for enhancing heat transfer of flat-plate solar collector and the fu-ture development trend are reviewed and discussed.

参考文献

[1] K. Lance Kelly;Eduardo Coronado;Lin Lin Zhao;George C. Schatz.The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,20033(3):668-677.
[2] 魏海波;龚肖南;孙清;张君薇.真空磁控溅射法沉积平板集热器板芯选择性吸收涂层[J].真空,2010(3):5-8.
[3] Du, M.;Hao, L.;Mi, J.;Lv, F.;Liu, X.;Jiang, L.;Wang, S..Optimization design of Ti_(0.5)Al_(0.5)N/Ti _(0.25)Al_(0.75)N/AlN coating used for solar selective applications[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,20114(4):1193-1196.
[4] 汪艳伟;郑茂余;赵立前;张洪敏.高效平板太阳能集热器盖板的热工性能实验研究[J].节能,2007(5):14-17.
[5] B. Hellstrom;M. Adsten;P. Nostell;B. Karlsson;E. Wackelgard.The impact of optical and thermal properties on the performance of flat plate solar collectors[J].Renewable energy,20033(3):331-344.
[6] Brij Bhushan;Ranjit Singh.Nusselt number and friction factor correlations for solar air heater duct having artificially roughened absorber plate[J].Solar Energy,20115(5):1109-1118.
[7] 李秦宜;陈群.平板太阳能集热器传热性能的炽理论优化[J].科学通报,2011(33):2819-2826.
[8] 张青;邓先和.微尺度通道平板集热器的实验研究与数值模拟[J].现代化工,2014(12):142-146.
[9] 毛凌波;张仁元;柯秀芳;陈枭.直接吸收式太阳能集热系统研究综述[J].材料导报,2007(12):12-15,23.
[10] 潘志东;NKURIKIYIMFURAInnocent;周明辉;王燕民;黄惠宁;凌志远.基于磁性纳米流体的直接吸收式太阳能集热器的集热性能[J].硅酸盐学报,2014(4):522-527.
[11] 王文婷;朱群志;唐李清;武明岩.纳米流体在直接吸收式太阳能高温集热器中的应用研究[J].化工新型材料,2012(7):118-120.
[12] 毛凌波;张仁元;柯秀芳;刘宗建.纳米流体太阳集热器的光热性能研究[J].太阳能学报,2009(12):1647-1652.
[13] 杜胜华;苏海鹏.混合工质太阳能平板热管集热器的传热性能[J].广州化工,2014(14):84-87.
[14] 徐国英;李凌志;张小松;孙岳明.添加不同纳米颗粒的导热油直接吸收集热实验性能[J].化工学报,2014(z2):293-298.
[15] Gabriela Huminic;Angel Huminic;Ion Morjan;Florian Dumitrache.Experimental study of the thermal performance of thermosyphon heat pipe using iron oxide nanoparticles[J].International Journal of Heat and Mass Transfer,20111/3(1/3):656-661.
[16] H. A. Mohammed;P. Gunnasegaran;N. H. Shuaib.Heat transfer in rectangular microchannels heat sink using nanofluids[J].International Communications in Heat and Mass Transfer: A Rapid Communications Journal,201010(10):1496-1503.
[17] 张燕,樊靖郁,范毅,刘建影.采用纳米流体的微通道冷却器散热特性研究[C].第九届全国水动力学学术会议暨第二十二届全国水动力学研讨会论文集,2009:592-597.
[18] Dorin Lelea.The performance evaluation of Al_2O_3/water nanofluid flow and heat transfer in microchannel heat sink[J].International Journal of Heat and Mass Transfer,201117/18(17/18):3891-3899.
[19] 刁彦华,王瑞,刘岩,赵耀华,郭磊,汪顺.TiO2/R141b纳米流体应用于微槽道结构蒸发器的强化换热特性研究[C].2012年中国工程热物理学会传热传质学学术年会论文集,2012:1-12.
[20] 熊建国;刘振华.平板热管微槽道传热面上纳米流体沸腾换热特性[J].中国电机工程学报,2007(23):105-109.
[21] 覃超;刘振华.碳纳米管悬浮液在微槽道热管中的应用[J].上海交通大学学报,2010(4):566-570.
[22] 微细管碳纳米管悬浮液强制对流换热实验研究[J].工程热物理学报,2011(7):1211-1214.
[23] 邓月超;赵耀华;全贞花;王林成.平板太阳能集热器空气夹层内自然对流换热的数值模拟[J].建筑科学,2012(10):84-87,92.
[24] J.L. Bhagoria;J.S. Saini;S.C. Solanki.Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorber plate[J].Renewable energy,20023(3):341-369.
[25] Analytic method for thermal performance and optimization of an absorber plate fin having variable thermal conductivity and overall loss coefficient[J].Applied energy,20107(7):P.2243.
[26] A detailed numerical model for flat-plate solar thermal devices[J].Solar Energy,200912(12):2157-2164.
[27] 胡锐;李凌;杨茉.物性参数对纳米流体强化换热的影响[J].上海理工大学学报,2013(2):179-182.
[28] 宣益民.纳米流体能量传递理论与应用[J].中国科学(技术科学),2014(3):269-279.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%