欢迎登录材料期刊网

材料期刊网

高级检索

通过差示扫描量热仪(DSC)利用三线法求出Ce70GaxCu30-x(x=4,6,10,12,15)系非晶合金过冷液体、熔体和晶体的热容及液体和晶体的热容差(△Cp),并计算出液体相对于晶体的过剩焓(△Hexc)、过剩熵(△Sexc)和Gibbs自由能之差(△G1-s).结果显示,对应于Ce-Ga-Cu系非晶合金低的玻璃转变温度(Tg),其液体的Kuazmann温度(TK)也较低.Ce-Ga-Cu系非晶合金的热力学参数△Hexc、△Seexc和△G1-s都随着Ga含量的增加而减小,这与玻璃形成能力(GFA)的变化趋势不相符.这说明对于Ce-Ga-Cu非晶合金体系,热力学驱动力不是控制非晶形成的主要因素,其他因素(比如动力学因素)可能是形成能力的关键因素.

参考文献

[1] Shen J;Zou J;Ye L;Lu ZP;Xing DW;Yan M;Sun JF.Glass-forming ability and thermal stability of a new bulk metallic glass in the quaternary Zr-Cu-Ni-Al system[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,200530/32(30/32):2519-2523.
[2] N. Nishiyama;A. Inoue.Glass-forming ability of Pd_(42.5)Cu_(30)Ni_(7.5)P_(20) alloy with a low critical cooling rate of 0.067 K/s[J].Applied physics letters,20024(4):568-570.
[3] Qiang Zheng;Jian Xu;Evan Ma.High glass-forming ability correlated with fragility of Mg-Cu(Ag)-Gd alloys[J].Journal of Applied Physics,200711(11):113519-1-113519-5-0.
[4] Q.K. Jiang;G.Q. Zhang;L. Yang.La-based bulk metallic glasses with critical diameter up to 30 mm[J].Acta materialia,200713(13):4409-4418.
[5] B.C. Xu;R.J. Xue;B. Zhang.Superior glass-forming ability and its correlation with density in Ce-Ga-Cu ternary bulk metallic glasses[J].Intermetallics,2013:1-5.
[6] 汪卫华.非晶态物质的本质和特性[J].物理学进展,2013(05):177-351.
[7] Busch R.;.The Thermophysical Properties of Bulk Metallic Glass-Forming Liquids[J].JOM,20007(7):39-42.
[8] Xu DH;Johnson WL.Crystallization kinetics and glass-forming ability of bulk metallic glasses Pd40Cu30Ni10P20 and Zr41.2Ti13.8Cu12.5Ni10Be22.5 from classical theory[J].Physical review, B. Condensed matter and materials physics,20062(2):4207-1-4207-5-0.
[9] Li JH;Dai XD;Liang SH;Tai KP;Kong Y;Liu BX.Interatomic potentials of the binary transition metal systems and some applications in materials physics[J].Physics Reports: A Review Section of Physics Letters (Section C),20081-3(1-3):1-134.
[10] Singh, PK;Dubey, KS.Analysis of thermodynamic behaviour of bulk metallic glass forming melts and glass forming ability[J].Journal of thermal analysis and calorimetry,20101(1):347-353.
[11] Li, P.;Wang, G.;Ding, D.;Shen, J..Glass forming ability and thermodynamics of new Ti-Cu-Ni-Zr bulk metallic glasses (Review)[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,201223(23):3200-3204.
[12] Wei, X.;Wang, X.;Wang, X.;Han, F..Crystallization kinetics of an amorphous Al_(75)Ni _(10)Ti_(10)Zr_5 alloy[J].Journal of Materials Science,201024(24):6593-6598.
[13] Zhang B;Wang RJ;Wang WH.Response of acoustic and elastic properties to pressure and crystallization of Ce-based bulk metallic glass[J].Physical review, B. Condensed matter and materials physics,200510(10):4205-1-4205-5-0.
[14] G. Dalla Fontana;G.L. Fiore;L. Battezzati.Thermodynamics of the Au_(49)Ag_(5.5)Pd_(2.3)Cu_(26.9)Si_(16.3) glass-forming alloy[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2013:95-98.
[15] Z. P. Lu;Y. Li;C. T. Liu.Glass-forming tendency of bulk La-Al-Ni-Cu-(Co) metallic glass-forming liquids[J].Journal of Applied Physics,20031(1):286-290.
[16] Richert R.;Angell CA..Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configurational entropy[J].The Journal of Chemical Physics,199821(21):9016-9026.
[17] Angell CA.FORMATION OF GLASSES FROM LIQUIDS AND BIOPOLYMERS [Review][J].Science,19955206(5206):1924-1935.
[18] Masuhr A.;Busch R.;Johnson WL.;Waniuk TA..Time scales for viscous flow, atomic transport, and crystallization in the liquid and supercooled liquid states of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J].Physical review letters,199911(11):2290-2293.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%