欢迎登录材料期刊网

材料期刊网

高级检索

采用 MTS809拉扭复合疲劳试验机、扫描电镜(SEM)研究了热等静压(Hot isostatic pressing,HIP)处理前后,圆形加载路径下,A319铝合金多轴疲劳特性。结果表明,HIP 处理后,材料中的孔洞缺陷数量减少,疲劳失效过程中产生的微裂纹的数量减少且尺寸减小。相同等效应变幅值下产生的轴向应力幅值、切向应力幅值、等效应力幅值均显著增加。材料轴向上表现为先产生循环硬化而后循环软化,切向则表现为先产生循环硬化后趋于循环稳定,H IP处理前后循环软化硬化趋势大致相同。轴向应力应变滞后回线、切向扭矩扭角滞后回线面积有所降低,附加强化效果增强。

The multiaxial fatigue properties of A3 1 9 aluminum alloys with and without hot isostatic pressing (HIP)treatment under circular loading condition were investigated by MTS809 axial/torsional test system and SEM. The results indicate that HIP decreases the sizes and numbers of holes and micro cracks formed during fatigue.Under the same equivalent strain amplitude,HIP increases axial stress,shear stress and equivalent stress amplitudes.Both HIPed and non-HIPed materials show the character of initial cyclic hardening followed by cyclic softening in the axial direction and a trend of initial cyclic hardening followed by a stable tendency in the shear direction,respectively.HIP reduces the areas of the stress-strain hysteresis loops and torque-rotation hysteresis loops and produces additional hardening effect.

参考文献

[1] A.R. Emami;S. Begum;D.L. Chen;T. Skszek;X.P. Niu;Y. Zhang;F. Gabbianelli.Cyclic deformation behavior of a cast aluminum alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20091/2(1/2):31-41.
[2] Okayasu, M.;Ohkura, Y.;Takeuchi, S.;Takasu, S.;Ohfuji, H.;Shiraishi, T..A study of the mechanical properties of an Al-Si-Cu alloy (ADC12) produced by various casting processes[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:185-192.
[3] Su, J.F.;Nie, X.;Stoilov, V..Characterization of fracture and debonding of Si particles in AlSi alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201027/28(27/28):7168-7175.
[4] Yeh JW.;Peng CH.;Yuan SY..A reciprocating extrusion process for producing hypereutectic Al-20wt.% Si wrought alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,19982(2):212-221.
[5] Yu Zhou;Zheng Zhang;Zihua Zhao;Qunpeng Zhong.Effects of HIP Temperature on the Microstructural Evolution and Property Restoration of a Ni-Based Superalloy[J].Journal of Materials Engineering and Performance,20131(1):215-222.
[6] 张树才;郭志俊;王跃旗;李爱民;王晋伟;冯云虎.涡轮叶轮用铸造高温合金的热等静压处理研究[J].兵器材料科学与工程,2011(4):67-69.
[7] 谢君;田素贵;周晓明;钱本江;于莉丽;汪武祥.热等静压温度对FGH95合金组织和持久性能的影响[J].中国有色金属学报,2011(8):1834-1840.
[8] 沈月;何国球;田丹丹;樊康乐;刘晓山;莫德锋.二次枝晶臂间距对A319铝合金拉伸及疲劳性能的影响[J].材料研究学报,2014(8):587-593.
[9] 邵冲;刘慧渊;李俊涛;马章林;赵明汉.热等静压在铸造高温合金领域的应用[J].材料导报,2012(19):121-124,135.
[10] Fan, K. L.;Liu, X. S.;He, G. Q.;Chen, H..Elevated temperature low cycle fatigue of a gravity casting Al-Si-Cu alloy used for engine cylinder heads[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2015:127-136.
[11] T.S. Srivatsan;M. Al-Hajri;W. Hannon.The strain amplitude-controlled cyclic fatigue, defomation and fracture behavior of 7034 aluminum alloy reinforced with silicon carbide particulates[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20041/2(1/2):181-196.
[12] Li, W.;Chen, Z.H.;Chen, D.;Teng, J.;Fan, C..Low-cycle fatigue behavior of SiC_p/Al-Si composites produced by spray deposition[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201029/30(29/30):7631-7637.
[13] Liu, J.;Zhang, Q.;Zuo, Z.;Xiong, Y.;Ren, F.;Volinsky, A.A..Microstructure evolution of Al-12Si-CuNiMg alloy under high temperature low cycle fatigue[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:186-190.
[14] 彭艳;李浩然.考虑附加强化效应的多轴高周疲劳损伤演化模型[J].机械工程学报,2015(16):135-142.
[15] 李棠;陶俊林;王清远.2024-T3和2524-T34铝合金疲劳裂纹的萌生机制[J].材料研究学报,2011(1):67-72.
[16] 吕世泉;何国球;沈月;田丹丹;刘晓山;林国斌;任敬东;胡杰.菱形加载路径下35CrMoA钢的微动疲劳行为[J].材料工程,2016(1):96-102.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%