欢迎登录材料期刊网

材料期刊网

高级检索

以粉煤灰基地质聚合物为研究对象,研究了粉煤灰在地聚物反应体系下的反应影响因素。主要研究内容有:反应时间、反应温度和反应碱浓度对反应过程及宏观强度的影响及相关反应机理。结果表明:在反应中后期,粉煤灰反应速率明显下降而此时地聚物的宏观性能反而呈现最大值。以75℃为例,反应时间从24 h 延长到672 h的过程中,反应程度仅从20.8%增加到了32.4%,平均反应速率仅为0.0179%/h,而此时样品的抗压强度则从1.31 MP a增加到了7.98 MP a;在地聚物反应体系下,反应产物为无定形的硅铝胶凝体,该物质的致密程度与地聚物宏观性能直接相关;温度的升高可有效提高粉煤灰的反应速率及地聚物的宏观性能,促进无定形胶凝体的形成和硬化。反应24 h,75℃下的反应程度和抗压强度可以达到20.8%和1.31 MPa,而同期35℃下的反应程度只能达到7.8%且尚未形成宏观强度;碱浓度的变化不仅可影响反应速率和宏观性能,还可改变粉煤灰在地聚物反应体系下的最终反应程度,在反应温度为75℃和50℃时,10 mol/L 体系下672 h 的反应程度比5 mol/L 体系分别高了90%和28.6%。

Focusing on the fly ash geopolymer,the reaction factors under fly ash based geopolymer system were studied.The effect of reaction time,reaction temperature and alkali concentration on reaction process,the effect of above factors on compressive strength,the reaction mechanism under fly ash based geopolymer system were analyzed. The results showed that during the latter part of the reaction,the reaction rate decreased while the compressive strength of geopolymer exhibited a maximum value.Taking 75 ℃ for example,when the reaction time extended from 24 h to 672 h,reaction degree only increased from 20.8% to 32.4%,the average response rate was only 0.0179%/h. While,at the same time,the compressive strength of the samples raised from 1.31 MPa to 7.98 MPa.Under geopolymer reaction system,the reaction product was amorphous silica-alumina gel and the dense of the gel was di-rectly rela-ted to the compressive strength of geopolymer.Increasing temperature could effectively increase the reac-tion rate and the compressive strength of the fly ash based geopolymer and promote the formation and hardening of amorphous gel.After reaction for 24 h,the reaction degree and compressive strength at 75 ℃ could reach 20.8% and 1.31 MPa,while at 35 ℃,the reaction degree could only reach 7.8% without the formation of macroscopic strength. The changes of alkali concentration could not only affected the reaction rates and compressive strength,but also affec-ted the finally reaction degree.At 75 ℃ and 50 ℃,under 10 mol/L system,the reaction degree at 672 h were 90%and 28.6% higher than that of 5 mol/L system.

参考文献

[1] 戴枫;樊娇;牛东晓.我国粉煤灰综合利用问题分析及发展对策研究[J].华东电力,2014(10):2205-2208.
[2] 陈彦广;陆佳;韩洪晶;李金莲;陈颖.粉煤灰在环境材料中利用的研究进展[J].化学通报(印刷版),2013(9):811-821.
[3] Provis JL;van Deventer JSJ.Geopolymerisation kinetics. 1. In situ energy-dispersive X-ray diffractometry[J].Chemical Engineering Science,20079(9):2309-2317.
[4] Chen Chen;Qin Li;Lifeng Shen;Jianping Zhai.Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash[J].Environmental technology,201210/12(10/12):1313-1321.
[5] 陈晨;贡伟亮;李琴;翟建平.粉煤灰碱浸出体系反应过程分析:Ⅱ反应动力学[J].环境科学与技术,2013(12):6-9.
[6] 陈晨;贡伟亮;李琴;翟建平.粉煤灰碱浸出体系反应过程分析Ⅰ影响因素[J].环境科学与技术,2013(10):122-125,131.
[7] Chen, C.;Gong, W.;Lutze, W.;Pegg, I.L..Kinetics of fly ash geopolymerization[J].Journal of Materials Science,20119(9):3073-3083.
[8] Chen, C.;Gong, W.;Lutze, W.;Pegg, I.L.;Zhai, J..Kinetics of fly ash leaching in strongly alkaline solutions[J].Journal of Materials Science,20113(3):590-597.
[9] Xu H.;van Deventer JSJ..The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars[J].Colloids and Surfaces, A. Physicochemical and Engineering Aspects,20031/3(1/3):27-44.
[10] Provis JL;van Deventer JSJ.Geopolymerisation kinetics. 2. Reaction kinetic modelling[J].Chemical Engineering Science,20079(9):2318-2329.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%