欢迎登录材料期刊网

材料期刊网

高级检索

Inconel 718 高温合金广泛应用于航空、航天、电力和国防等领域中复杂金属结构构件的制造, 其高温抗疲劳性能和蠕变持久强度与成形加工过程中微观组织的演变密切相关. 以往的研究侧重于镍基合金热加工(如定向凝固、热处理、锻造和焊接等)工艺参数的优化, 较少从析出相控制的角度来阐明冷轧、热变形、焊接等工艺与高温服役性能之间的内在联系. 本文介绍了该合金中不同类型的析出相, 包括: 主要强化相(g'' 相)、辅助强化相(g' 相)、g'' 相的平衡相(d 相), 以及MX型碳氮化物和Laves 相; 论述了镍基合金制备过程中不同类型析出相的析出机制及其对合金高温性能的影响; 指出了镍基合金高能电子束焊接过程中, 焊接热影响区微裂纹形成的影响因素.

For the manufacture of complicated metallic structural components in power plants, aerospace and defense industry, Inconel 718 superalloy has been widely employed. High-temperature fatigue resistance and creep rupture strength of Inconel 718 superalloy are susceptible to the microstructure evolution in manufacture processing. Previous research work is generally focused on the parameter optimization of hot working processes (directional solidification, heat treatment, forging and welding). Relationships between the cold deformation, hot working, welding and the high-temperature mechanical performance, are seldom discussed, especially in the light of precipitate control . In this work, various types of secondary phases in Inconel 718 alloy are reviewed, including the primary strengthening phase (g'' phase), secondary strengthening phase (g' phase), equilibrium phase of g'' phase (d phase), MX-type carbonitride and Laves phase. Precipitation mechanisms of secondary phases in Inconel 718 alloy are also reviewed, as well as the effects of different types of precipitates on high-temperature performance of the Inconel 718 alloy. With respect to the high-energy electron beam welding of Inconel 718 alloys, factors contributing to the cracking in heat affected zone are indicated.

参考文献

[1] Guan Y S, Liu E Z, Guan X R, Liu Z. J Mater Sci Technol, 2016;32: 271
[2] Dong J X, Liu X B, Tang B, Hu Y H, Xu Z C, Xie X S. Acta Metall Sin, 1996; 32: 241
[3] (董建新, 刘兴博, 唐宾, 胡尧和, 徐志超, 谢锡善. 金属学报,1996; 32: 241)
[4] Zhang YW, Hu B F. Acta Metall Sin, 2015; 51: 967
[5] Rao G A, Kumar M, Srinivas M, Sarma D S. Mater Sci Eng, 2003;A355: 114
[6] (张义文, 胡本芙. 金属学报, 2015; 51: 967)
[7] Dong X M, Zhang X L, Du K, Zhou Y Z, Jin T, Ye H Q. J Mater Sci Technol, 2012; 28: 1031
[8] Tiley J, Viswanathan G B, Srinivasan R, Banerjee R, Dimiduk D M,Fraser H L. Acta Mater, 2009; 57: 2538
[9] Li X W, Wang L, Dong J S, Lou L H. J Mater Sci Technol, 2014;30: 1296
[10] Ma D X. Acta Metall Sin, 2015; 51: 1179
[11] Liu T, Dong J S, Wang L, Li Z J, Zhou X T, Lou L H, Zhang J. J Mater Sci Technol, 2015; 31: 269
[12] Xu Z H, Wang Z K, Niu J, Dai J W, He L M, Mu R D. J Alloys Compd, 2016; 676: 231
[13] Bai M W, Jiang H B, Chen Y, Chen Y Q, Grovenor C, Zhao X F,Xiao P. Mater Des, 2016; 97: 364
[14] (马德新. 金属学报, 2015; 51: 1179)
[15] Song K, Yu K, Lin X, Yang J, Hu H O, Huang W D. Acta Metall Sin, 2015; 51: 935
[16] Kirman I,Warrington D H. Metall Trans, 1970; 1A: 2667
[17] Zhao X B, Gu Y F, Lu J T, Yan J B, Yin H F. Rare Met Mater Eng,2015; 44: 768
[18] Wlodek S T, Field R D. In: Loria E A ed., 3rd Int Symp on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA: The Minerals, Metals & Materials Society, 1994: 659
[19] (宋衎, 喻恺, 林鑫, 杨静, 胡海鸥, 黄卫东. 金属学报, 2015;51: 935)
[20] Sundararaman M, Mukhopadhyay P, Banerjee S. Metall Trans,1988; 19A: 453
[21] Damodaram R, Raman S G S, Satyanarayana D V V, Madhusudhan R G, Prasad R K. Mater Sci Eng, 2014; A612: 414
[22] Sundararaman M, Banerjee S. Metall Mater Trans, 1992; 23A:2015
[23] Sundararaman M, Mukhopadhyay P, Banerjee S. In: Loria E A ed.,3rd Int Symp on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA: The Minerals, Metals & Materials Society,1994: 419
[24] (赵新宝, 谷月峰, 鲁金涛, 严靖博, 尹宏飞. 稀有金属材料与工程, 2015; 44: 768)
[25] Asadian S,Wei LY,Warren R. Mater Charact, 2004; 53: 7
[26] WangWQ. Aviat Manuf Eng, 1995; (7): 15
[27] Zhou X H. Forging Technol, 2004; 29(5): 9
[28] Cai D Y, Zhang W H, Liu W C. Trans Nonferrous Met Soc China,2003; 13: 1338
[29] Sellars C M, TegartWJ. Met Sci Rev Methods, 1996; 63: 731
[30] Biswas S, Reddy G M, Mohandas T, Murthy V S. J Mater Sci,2004; 39: 6813
[31] Zhou N, Lv D C, Zhang H L, McAllister D, Zhang F. Acta Mater,2014; 65: 270
[32] Lin Y C,Wen D X, Deng J, Chen J. Mater Des, 2014; 59: 115
[33] (汪文迁. 航空制造工程, 1995; (7): 15)
[34] Findley K O, Evans J L, Saxena A. Int Mater Rev, 2011; 56: 49
[35] (周晓虎. 锻压技术, 2004; 29(5): 9)
[36] Garcia C I, Wang G D, Camus D E, Loria E A, De Ardo A J. In: Loria E A ed., 3rd Int Symp on Superalloys 718, 626, 706, and Various Derivatives, Pittsburgh, PA: The Minerals, Metals & Materials Society, 1994: 293
[37] Ning Y Q, Fu MW, Chen X. Mater Sci Eng, 2012; A540: 164
[38] Wen D X, Lin Y C, Li H B, Chen X M, Deng J, Li L T. Mater Sci Eng, 2014; A591: 183
[39] Wen D X, Lin Y C, Chen J, Chen X M, Zhang J L, He M. Mater Sci Eng, 2015; A620: 319
[40] Thomas A, El-Wahabi M, Cabrera J M, Prad J M. J Mater Process Technol, 2006; 177: 469
[41] Zhang H Y, Zhang S H, Cheng M, Li Z X. Mater Charact, 2010;61: 49
[42] Cheng M, Zhang H Y, Zhang S H. J Mater Sci, 2012; 47: 251
[43] Wang Y, Zhen L, Shao W Z, Yang L, Zhang X M. J Alloys Compd, 2009; 474: 341
[44] Nalawade S A, Sundararaman M, Singh J B, Verma A, Kishore R.Mater Sci Eng, 2010; A527: 2906
[45] Lin Y C, Li K K, Li H B,Wen D X. Mater Des, 2015; 74: 108
[46] Chen X M, Lin Y C, Wen D X, Zhang J L, He M. Mater Des,2014; 57: 568
[47] Lin Y C, Chen X M, Wen D X, Chen M S. Comp Mater Sci, 2014;83: 282
[48] Feng Y J. Master Thesis, Harbin Institute of Technology, 2012
[49] LiuWC, Xiao F R, Yao M. Scr Mater, 1997; 37: 53
[50] Wei X P, Zheng W J, Song Z G, Lei T, Yong Q L, Xie Q C. J Iron Steel Res Int, 2014; 21: 375
[51] Mei Y P, Liu Y C, Liu C X, Li C, Yu L M, Guo Q Y, Li H J. J Alloys Compd, 2015; 649: 949
[52] Wang Y. Master Thesis, Harbin Institute of Technology, 2008
[53] Lin Y C, Deng J, Jiang Y Q, Liu G. Mater Des, 2014; 55: 949
[54] Kashyap B P, Chaturvedi M C. Mater Sci Eng, 2007; A445-446:364
[55] Huang Y, Langdon T G. J Mater Sci, 2007; 42: 421
[56] Ning Y Q, Huang S B, Fu M W, Dong J. Mater Charact, 2015;109: 36
[57] (冯莹娟. 哈尔滨工业大学硕士学位论文, 2012)
[58] Deng G J, Tu S T, Zhang X C, Wang J, Zhang C C, Qian X Y,Wang Y N. Eng Fract Mech, 2016; 153: 35
[59] Hu D Y, Mao J X, Song J, Meng F C, Shan X M, Wang R Q. Mater Sci Eng, 2016; A669: 318
[60] Ding T S, Zhang X C, Tu S D, Xuan F Z. Trans Mater Heat Treat,2016; 37(4): 69
[61] Wang R Z, Zhang X C, Liu F, Yao L L, Tu S T. Procedia Eng,2015; 130: 1088
[62] (王岩. 哈尔滨工业大学硕士学位论文, 2008)
[63] Chen G, Zhang Y, Xu D K, Chen X. Mater Sci Eng, 2016; A655:175
[64] Xiao L, Chen D L, Chaturvedi M C. Mater Sci Eng, 2008; A483:369
[65] Xiao L, Chen D L, Chaturvedi M C. Scr Mater, 2005; 52: 603
[66] Tian S G, Li Z R, Zhao Z G, Chen L Q, Sun W R, Liu X H. Rare Met Mater Eng, 2012; 41: 1651
[67] Tian S G, Li Z R, Zhao Z G, Chen L Q, Sun W R, Liu X F. Mater Sci Eng, 2012; A550: 235
[68] Caliari F R, Candioto K C G, Couto A A, Nunes C Â, Reis D A P.J Mater Eng Perform, 2016; 25: 2307
[69] Kuo C M, Yang Y T, Bor H Y, Wei C N, Tai C C. Mater Sci Eng,2009; A510-511: 289
[70] Song HW, Guo S R, Hu Z Q. Scr Mater, 1999; 41: 215
[71] Yeh A C, Lu K W, Kuo C M, Borc H Y, Wei C N. Mater Sci Eng,2011; A530: 525
[72] (丁天胜, 张显程, 涂善东, 轩福贞. 材料热处理学报, 2016;37(4): 69)
[73] Richards N L, Chaturvedi M C. Int Mater Rev, 2000; 45: 109
[74] Damodaram R, Raman S G S, Rao K P. Mater Sci Eng, 2013;A560: 781
[75] Damodaram R, Raman S G S, Rao K P. Mater Des, 2014; 53: 954
[76] Idowu O A, Ojo O A, Chaturvedi M C. Mater Sci Eng, 2007;A454: 389
[77] Manikandan S G K, Sivakumar D, Kamaraj M, Prasad K. Mater Sci Forum, 2012; 710: 614
[78] Ramkumar K D, Sridhar R, Periwal S, Oza S, Saxena V. Mater Des, 2015; 68: 158
[79] (田素贵, 李振荣, 赵中刚, 陈礼清, 孙文儒, 刘相华. 稀有金属材料与工程, 2012; 41: 1651)
[80] Koleva E G, Mladenov G M, Trushnikov D N, Belenkiy V Y. J Mater Process Technol, 2014; 214: 1812
[81] Khodir S, Shibayanagi T, Takahashi M, Abdel-Aleem H, Ikeuchi K, Hidad P, Arivazhagan N. Mater Des, 2014; 60: 391
[82] Mei Y P, Liu Y C, Liu C X, Li C, Yu L M, Guo Q Y, Li H J. Mater Des, 2016; 89: 964
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%