欢迎登录材料期刊网

材料期刊网

高级检索

仿生表面减阻是众多减阻方法中非常有前景的减阻方式.目前研究最多的是仿生鲨鱼皮减阻和仿生超疏水表面减阻,其中仿生鲨鱼皮表面减阻又分为直接复刻鲨鱼皮表面的盾鳞结构和仿鲨鱼皮沟槽减阻.文中介绍了国内外关于仿生减阻的最新研究进展及成果,综述了仿生鲨鱼皮表面减阻和仿生超疏水表面减阻的研究现状,探讨了仿生表面减阻未来的发展方向和研究重点.虽然仿生超疏水表面一般都具有粗糙的表面微纳结构以及较低的表面能,但不是所有的超疏水表面都具有减阻效果,因此超疏水表面的减阻效果还需要一个度量标准.

参考文献

[1] Luo ZZ;Zhang ZZ;Hu LT;Liu WM;Guo ZG;Zhang HJ;Wang WJ.Stable bionic superhydrophobic coating surface fabricated by a conventional curing process[J].Advanced Materials,20085(5):970-974.
[2] 宋保维;郭云鹤;胡海豹;宋东.微结构超疏水表面减阻特性数值研究[J].计算物理,2013(1):70-74.
[3] 王绍敏.仿生结构化船体表面减阻性能分析[J].舰船科学技术,2010(05):11-13,51.
[4] Kodama Y.;Takahashi T.;Kawashima H.;Kakugawa A..Experimental study on microbubbles and their applicability to ships for skin friction reduction[J].International journal of heat and fluid flow,20005(5):582-588.
[5] White, L.R.;Carnie, S.L..The drag on a flattened bubble moving across a plane substrate[J].Journal of Fluid Mechanics,2012:345-373.
[6] Marston, J.O.;Vakarelski, I.U.;Thoroddsen, S.T..Bubble entrapment during sphere impact onto quiescent liquid surfaces[J].Journal of Fluid Mechanics,2011:660-670.
[7] Choongyeop Lee;Chang-Jin Kim.Underwater Restoration and Retention of Gases on Superhydrophobic Surfaces for Drag Reduction[J].Physical review letters,20111(1):14502.1-14502.4.
[8] Gesser HD;Lafreniere DRT.A drag-reducing water insoluble hydrophilic marine coating[J].Progress in Organic Coatings: An International Review Journal,20044(4):372-374.
[9] Truesdell R;Mammoli A;Vorobieff P;van Swol F;Brinker CJ.Drag reduction on a patterned superhydrophobic surface[J].Physical review letters,20064(4):4504-1-4504-4-0.
[10] 王宝柱;黄微波;卢敏;刘东晖;陈酒姜.减阻降噪技术的最新进展[J].现代涂料与涂装,2008(1):33-36.
[11] Hou YX;Somandepalli VSR;Mungal MG.A technique to determine total shear stress and polymer stress profiles in drag reduced boundary layer flows[J].Experiments in Fluids: Experimental Methods and Their Applications to Fluid Flow,20064(4):589-600.
[12] 杨海霞 .沟槽面湍流边界层减阻的数值研究[D].哈尔滨工程大学,2008.
[13] 田军;薛群基.低表面能涂层降低流体噪声的试验研究[J].应用科学学报,1999(01):114-118.
[14] Ridgway S.H.;Carder D.A..Features of dolphin skin with potential hydrodynamic importance[J].IEEE engineering in medicine and biology magazine,19933(3):83-88.
[15] Bechert DW.;Hage W.;Bruse M..Experiments with three-dimensional riblets as an idealized model of shark skin[J].Experiments in Fluids: Experimental Methods and Their Applications to Fluid Flow,20005(5):403-412.
[16] Wei, PJ;Shen, YX;Lin, JF.Characteristics of Water Strider Legs in Hydrodynamic Situations[J].Langmuir: The ACS Journal of Surfaces and Colloids,200912(12):7006-7009.
[17] Gregory D. Bixler;Bharat Bhushan.Fluid Drag Reduction with Shark-Skin Riblet Inspired Microstructured Surfaces[J].Advanced functional materials,201336(36):4507-4528.
[18] S.-J. Lee;Y.-G. Jang.Control of flow around a NACA 0012 airfoil with a micro-riblet film[J].Journal of Fluids and Structures,20055(5):659-672.
[19] 韩鑫;张德远;李翔;李元月.大面积鲨鱼皮复制制备仿生减阻表面研究[J].科学通报,2008(7):838-842.
[20] 韩鑫;张德远.鲨鱼皮微电铸复制工艺研究[J].农业机械学报,2011(2):229-234.
[21] Gregory D. Bixler;Bharat Bhushan.Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects[J].Soft matter,201244(44):11271-11284.
[22] 刘宝胜;吴为;曾元松.鲨鱼皮仿生结构应用及制造技术综述[J].塑性工程学报,2014(4):56-62.
[23] G. Hirt;M. Thome.Rolling of functional metallic surface structures[J].CIRP Annals,20081(1):317-320.
[24] Berend Denkena;Jens Kohler;Bo Wang.Manufacturing of functional riblet structures by profile grinding[J].CIRP Journal of Manufacturing Science and Technology,20101(1):14-26.
[25] 胡海豹;黄桥高;蒋雄;宋保维;潘光.脊状表面的准LIGA成形技术及其减阻试验研究[J].中国机械工程,2010(3):336-339.
[26] 柯贵喜;潘光;黄桥高;胡海豹;刘占一.水下减阻技术研究综述[J].力学进展,2009(5):546-554.
[27] 莫梦婷;赵文杰;陈子飞;曾志翔;乌学东;薛群基.海洋减阻技术的研究现状[J].摩擦学学报,2015(4):505-515.
[28] Barthlott W;Neinhuis C.Purity of the sacred lotus, or escape from contamination in biological surfaces.[J].Planta,19971(1):1-8.
[29] Neinhuis C;Barthlott W.Characterization and distribution of water-repellent, self-cleaning plant surfaces.[J].Annals of Botany,19976(6):667-677.
[30] 戴振东;佟金;任露泉.仿生摩擦学研究及发展[J].科学通报,2006(20):2353-2359.
[31] Yali Zhou;Mei Li;Bin Su.Superhydrophobic surface created by the silver mirror reaction and its drag-reduction effect on water[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,200920(20):3301-3306.
[32] Hongyu Dong;Mengjiao Cheng;Yajun Zhang.Extraordinary drag-reducing effect of a superhydrophobic coating on a macroscopic model ship at high speed[J].Journal of Materials Chemistry, A. Materials for energy and sustainability,201319(19):5886-5891.
[33] Zhang, Songsong;Ouyang, Xiao;Li, Jie;Gao, Shan;Han, Shihui;Liu, Lianhe;Wei, Hao.Underwater Drag-Reducing Effect of Superhydrophobic Submarine Model[J].Langmuir: The ACS Journal of Surfaces and Colloids,20151(1):587-593.
[34] Zhu, X.;Zhang, Z.;Xu, X.;Men, X.;Yang, J.;Zhou, X.;Xue, Q..Facile fabrication of a superamphiphobic surface on the copper substrate[J].Journal of Colloid and Interface Science,2012:443-449.
[35] Wang, Yang;Liu, Xiaowei;Zhang, Haifeng;Zhou, Zhiping.Superhydrophobic surfaces created by a one-step solution-immersion process and their drag-reduction effect on water[J].RSC Advances,201524(24):18909-18914.
[36] AUDREY STEINBERGER;CECILE COTTIN-BIZONNE;PASCAL KLEIMANN.High friction on a bubble mattress[J].Nature materials,20079(9):665-668.
[37] Bin Su;Mei Li;Qinghua Lu.Toward Understanding Whether Superhydrophobic Surfaces Can Really Decrease Fluidic Friction Drag[J].Langmuir: The ACS Journal of Surfaces and Colloids,20108(8):6048-6052.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%