基于密度泛函理论对Hg在纯CeO2表面的吸附机理进行了理论计算,采用p(3×3)的二维超晶胞模型计算了CeO2 3个不同表面上不同位点对汞的吸附能,计算结果表明,Hg在纯CeO2表面吸附能力较弱,为物理吸附,Hg原子与CeO2未形成有效化学键。为了进一步研究Hg在CeO2表面的吸附机理,计算了Hg在Pd掺杂的CeO2(Pd-CeO2)表面的吸附机理,结果表明,Hg在Pd-CeO2表面吸附能较强,为化学吸附,Hg原子与Pd-CeO2之间形成有效的化学键,说明Pd的掺杂有利于提高CeO2对汞的吸附能力。为了量化纯CeO2和Pd-CeO2的汞脱除效率,对Hg在纯CeO2和Pd-CeO2表面的脱除进行了实验研究。实验结果表明,纯CeO2对汞的脱除效率较低,贵金属Pd的掺杂能够有效提高CeO2的汞脱除效率,与理论计算的结果相符。
The adsorption mechanism of Hg on pure CeO2 surface was studied by the density functional theory. The adsorption energy of Hg on different surfaces and different sites of CeO2 was calculated by two-dimensional supercell model of p(3×3). The results show that the adsorption capacity of Hg on pure CeO2 is weak, which is a physical adsorption, and the Hg atom and CeO2 do not form effective chemical bonds. In order to further study the adsorption mechanism of Hg on CeO2 related surface, the adsorption mechanism of Hg on Pd doped CeO2(Pd-CeO2) surface was also studied. The results show that the adsorption capacity of Hg on Pd-CeO2 is strong, which is a chemical adsorption, and the Hg atom and Pd-CeO2 form effective chemical bonds. The adsorption capacity of Hg on CeO2 surface is enhanced due to the doping of Pd. In order to further quantify the adsorption efficiency of Hg on the surface of pure CeO2 and Pd-CeO2, the experimental study has been carried on. The experimental results show that the adsorption efficiency of Hg on pure CeO2 is low, and doping of Pd can effectively improve the adsorption efficiency of CeO2, which are consistent with the results of theoretical calculation.
参考文献
[1] | CHEN Ying,SHAO Yufang. A Review of Mercury Pollution and Human Health Burden[J]. Environ Chem,2012,31(12):1934-1941(in Chinese). 陈影,邵玉芳. 汞污染及人体负荷研究进展[J]. 环境化学,2012,31(12):1934-1941. |
[2] | Ministry of Environmental Protection of the People's Republic of China,2011. Emission Standard of Air Pollutants for Thermal Power Plants[S](in Chinese). 中华人民共和国环境保护部,2011. 火电厂大气污染物排放标准[S]. |
[3] | CHEN Bo. Minamata Convention on Mercury[J]. World Environ,2015,(1):7(in Chinese). 陈博. 水俣公约[J]. 世界环境,2015,(1):7. |
[4] | HOU Wenhui,ZHOU Jinsong,ZHANG Yi,et al. Effect of H2S on Elemental Mercury Removal in Coal Gas by Fe2O3[J]. Proc CSEE,2013,33(23):92-98(in Chinese). 侯文慧,周劲松,张义,等. H2S对氧化铁脱除煤气中单质汞的影响[J]. 中国电机工程学报,2013,33(23):92-98. |
[5] | Dennis Y L,David L G,Donald J R. Study of Mercury Speciation from Simulated Coal Gasification[J]. Ind Eng Chem Res,2004,17(43):5400-5404. |
[6] | WANG Shuxiao,LIU Min,JIANG Jingkun,et al. Estimate the Mercury Emissions from Non-coal Sources in China[J]. Environ Sci,2006,27(12):2401-2406(in Chinese). 王书肖,刘敏,蒋靖坤,等. 中国非燃煤大气汞排放量估算[J]. 环境科学,2006,27(12):2401-2406. |
[7] | WANG Yanjie,LIU Rui,LYU Guangming,et al. Ceria Nanostructures and Their Catalytic Applications[J]. J Chinese Soc Rare Earths,2014,32(3):257-269(in Chinese). 王艳杰,刘瑞,吕光明,等. 纳米CeO2的催化基础及应用研究进展[J]. 中国稀土学报,2014,32(3):257-269. |
[8] | Zhou J S,Hou W H,Gao X,et al. CeO2-TiO2 Sorbents for Removal of Elemental Mercury from Syngas[J]. Environ Sci Technol,2013,47(17):10056-10062. |
[9] | HOU Wenhui. Mechanism Study on the Removal of Elemental Mercury from Simulate Syngas over Metal Oxide Sorbents[D]. Hangzhou:Zhejiang University,2015(in Chinese). 侯文慧. 模拟煤气条件下金属氧化物吸附脱除单质汞的机理研究[D]. 杭州:浙江大学,2015. |
[10] | ZHENG Zhizhan. Mechanism Study of Mercury Adsorption on Mn Doped CeO2Surfaces[D]. Hangzhou:Zhejiang University,2013(in Chinese). 郑智展. 汞在锰铈复合氧化物表面吸附的机理研究[D]. 杭州:浙江大学,2013. |
[11] | TANG Yuanhao,ZHANG Hua,GUAN Chunmei,et al. First Principles Study on the Effect of Mn, Pr, Sn and Zr on the Properties of CeO2 Based Solid Electrolytes[J]. Sci Sin-Phys Mech Astron,2012,42(9):914-925(in Chinese). 唐元昊,张华,管春梅,等. 四价离子M(M=Mn,Pr,Sn,Zr,Se,Te)掺杂对CeO2氧化还原性能的影响[J]. 中国科学:物理学、力学、天文学,2012,42(9):914-925. |
[12] | Steckel J A. Density Functional Theory Study of Mercury Adsorption on Metal Surfaces[J]. Phys Rev B,2008,77(11):115412(1)-115412(13). |
[13] | Kresse G,Furthmuller J. Efficient Iterative Schemes for Ab Initio Total Energy Calculations Using a Plane-wave Basis Set[J]. Phys Rev B,1996,54(16):11169-11186. |
[14] | Perdew J P,Chevary J A,Vosko S H,et al. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation[J]. Phys Rev B,1992,46(11):6671-6687. |
[15] | Perdew J P,WANG Y. Accurate and Simple Analytic Representation of the Electron Gas Correlation Energy[J]. Phys Rev B,1992,45(23):13244-13249. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%