欢迎登录材料期刊网

材料期刊网

高级检索

传统超级电容器受低能量密度的限制,在当今器件研发中需更加关注电极材料结构-组成-性能研究。本文总结了新型赝电容器的发展历程及其研发过程中存在的挑战与解决措施,着重从胶体离子超级电容器电极材料等新型的电极材料和氧化还原电解质两个方面进行综述。原位合成的胶体离子超级电容器电极材料比非原位合成的电极材料具有更高的反应活性,并且以近似离子的状态存在,有效增加了电极材料的比容量。氧化还原电解质的使用在不改变电极材料的前提下,进一步提高了超级电容器的能量密度。初步介绍了新型锂离子电容器。锂离子电容器同时使用电池型材料和电容型材料,可提高其能量密度。依据当前超级电容器的研发现状,未来有望将电池材料和电容器材料结合使用,进而形成电池电容器或电容电池,使其同时具有高的能量密度和功率密度。

Traditional supercapacitors have low energy density, which in most cases hinders their further practical applications, therefore, people more focus on studies of the structure-composition-property relationship of electrode materials towards high performance supercapacitors during present research and development of electrochemical energy storage devices. This article summarizes the history of research and development of novel supercapacitors, as well as their challenges and strategies, with the aim to find novel supercapacitor systems via searching for high efficient electrode materials and electrolytes. Novel electrode materials and redox electrolytes are thus particularly emphasized herein, for example, some promising electrode materials of colloidal ion supercapacitor systems have shown some advantages compared to those ex-situ prepared electrode materials, which indicates high electrochemical reactivity existing in the colloidal state of constituent transitional and rare earth metal cations. Furthermore, we also introduce novel lithium-ion supercapacitors as some promising research and development directions. On the basis of the current status of research and development of supercapacitors, it is highly expected to combine the advantages of both battery electrode materials and supercapacitor electrode materials towards the so-called supercapattery or supercabattery, which may be dominant in the field of future electrochemical energy storage devices.>

参考文献

[1] Simon P, Gogotsi Y. Materials for Electrochemical Capacitors[J]. Nat Mater, 2008, 7(11):845-854.
[2] Pandolfo A G, Hollenkamp A F. Carbon Properties and Their Role in Supercapacitors[J]. J Power Sources, 2006, 157(1):11-27.
[3] Gonz lez A, Goikolea E, Barrena J A, et al. Review on Supercapacitors:Technologies and Materials[J]. Renew Sust Energ Rev, 2016, 58(2016):1189-1206.
[4] Miller J R, Simon P. Electrochemical Capacitors for Energy Management[J]. Science, 2008, 321(5889):651-652.
[5] LI Hong, LYU Yingchun. A Review on Electrochemical Energy Storage[J]. J Electrochem, 2015, 21(5):412-424(in Chinese).
李泓, 吕迎春. 电化学储能基本问题综述[J]. 电化学, 2015, 21(5):412-424.
[6] Chang S K, Zainal Z, Tan K B, et al. Recent Development in Spinel Cobaltites for Supercapacitor Application[J]. Ceram Int, 2015, 41(1):1-14.
[7] Becker H. E. Low Voltage Electrolytic Capacitor:US42304254A[P], 1957-07-23.
[8] Boos D I. Electrolytic Capacitor Having Carbon Paste Electrodes:US3536963DA[P], 1970-10-27.
[9] Conway B E. Electrochemical Supercapacitors:Scientific Fundamentals and Technological Applications[M]. New York:Kluwer Academic/Plenum Publishers, 1999:264-265.
[10] LIU Haijing, XIA Yongyao. Research Progress of Hybrid Supercapacitor[J]. Prog Chem, 2011, 23(2/3):595-604(in Chinese).
刘海晶, 夏永姚. 混合型超级电容器的研究进展[J]. 化学进展, 2011, 23(2/3):595-604.
[11] Kötz R, Carlen M. Principles and Applications of Electrochemical Capacitors[J]. Electrochim Acta, 2000, 45(15/16):2483-2498.
[12] Supercapacitors Can Destroy the Lithium-ion Battery Market[Z/OL].[2014-06-24].http://www.idtechex.com/research/articles/supercapacitors-can-destroy-the-lithium-ion-battery-market-00006649.asp.
[13] Wang G P, Zhang L, Zhang J J. A Review of Electrode Materials for Electrochemical Supercapacitors[J]. Chem Soc Rev, 2012, 41(2):797-828.
[14] XUE Dongfeng, LYU Pai, LI Keyan. Structure Design of Supercapacitor Electrode Materials[J]. J Henan Univ, 2012, 42(5):512-5239(in Chinese).
薛冬峰, 吕派, 李克艳. 超级电容器电极材料的结构设计[J]. 河南大学学报, 2012, 42(5):512-523.
[15] CHEN Kunfeng, XUE Dongfeng. Colloidal Ionic Supercapacitors[J]. J Electrochem, 2015, 21(6):534-542(in Chinese).
陈昆峰, 薛冬峰. 胶体离子超级电容器[J]. 电化学, 2015, 21(6):534-542.
[16] CHEN Kunfeng, YANG Yangyang, CHEN Xu, et al. Study of Transition Metal-Based Materal for Eletrochemical Energy Storage[J]. J Henan Univ, 2014, 44(4):398-415(in Chinese).
陈昆峰, 杨阳阳, 陈旭, 等. 过渡金属材料的电化学储能性能研究[J]. 河南大学学报, 2014, 44(4):398-415.
[17] Chen K F, Xue D F. Rare Earth and Transitional Metal Colloidal Supercapacitors[J]. Sci China Tech Sci, 2015, 58(11):1768-1778.
[18] Chen X, Chen K, Wang H, et al. Crystallization of Fe3+ in an Alkaline Aqueous Pseudocapacitor System[J]. Cryst Eng Comm, 2014, 16(29):6707-6715.
[19] Chen X, Chen K F, Wang H, et al. Functionality of Fe(NO3)3 Salts as Both Positive and Negative Pseudocapacitor Electrodes in Alkaline Aqueous Electrolyte[J]. Electrochim Acta, 2014, 147:216-224.
[20] Chen K, Yang Y Y, Li K Y, et al. CoCl2 Designed as Excellent Pseudocapacitor Electrode Materials[J]. ACS Sustainable Chem Eng, 2014, 2(3):440-444.
[21] Chen K F, Song S Y, Xue D F. An Ionic Aqueous Pseudocapacitor System:Electroactive Ions in Both Salt-Electrode and Redox-Electrolyte[J]. RSC Adv, 2014, 4(44):23338-23343.
[22] Chen K F, Xue D F, Komarneni S. Colloidal Pseudocapacitor: Nanoscale Aggregation of Mn Colloids from MnCl2 under Alkaline Condition[J]. J Power Sources, 2015, 279:365-371.
[23] Chen K F, Song S Y, Li K Y, et al. Water-Soluble Inorganic Salts with Ultrahigh Specific Capacitance: Crystallization Transformation Investigation of CuCl2 Electrodes[J]. Cryst Eng Comm, 2013, 15(47):10367-10373.
[24] Chen K F, Xue D F. Crystallization of Tin Chloride for Promising Pseudocapacitor Electrode[J]. Cryst Eng Comm, 2014, 16(21):4610-4618.
[25] Chen K F, Xue D F. Water-Soluble Inorganic Salt with Ultrahigh Specific Capacitance:Ce(NO3)3 Can Be Designed as Excellent Pseudocapacitor Electrode[J]. J Colloid Interface Sci, 2014, 416:172-176. [26 Chen K F, Xue D F. YbCl3 Electrode in Alkaline Aqueous Electrolyte with High Pseudocapacitance[J]. J Colloid Interface Sci, 2014, 424(18):84-89.
[26] Chen K F, Xue D F. Formation of Electroactive Colloids via in-Situ Coprecipitation under Electric Field:Erbium Chloride Alkaline Aqueous Pseudocapacitor[J]. J Colloid Interface Sci, 2014, 430:265-270.
[27] CHEN Kunfeng, XUE Dongfeng. Evaluation of Specific Capacitance of Colloidal Ionic Supercapacitor Systems[J]. Chinese J Appl Chem, 2016, 33(1):18-24(in Chinese).
[28] 陈昆峰, 薛冬峰. 胶体离子超级电容器的比容量评价[J]. 应用化学, 2016, 33(1):18-24.
Akinwolemiwa B, Peng C, Chen G Z. Redox Electrolytes in Supercapacitors[J]. J Electrochem Soc, 2015, 162(5):A5054-A5059.
[29] Mai L Q, Minhas-Khan A, Tian X, et al. Synergistic Interaction Between Redox-Active Electrolyte and Binder-Free Functionalized Carbon for Ultrahigh Supercapacitor Performance[J]. Nat Commun, 2013, 4(1):2923-2929.
[30] Yu H Y, Wu J H, Fan L Q, et al. An Efficient Redox-Mediated Organic Electrolyte for High-Energy Supercapacitor[J]. J Power Sources, 2014, 248:1123-1126.
[31] Wu J H, Yu H J, Fan L Q, et al. A Simple and High-Effective Electrolyte Mediated with P-Phenylenediamine for Supercapacitor[J]. J Mater Chem, 2012, 22(36):19025-19030.
[32] Yu H J, Fan L Q, Wu J H, et al. Redox-Active Alkaline Electrolyte for Carbon-Based Supercapacitor with Pseudocapacitive Performance and Excellent Cyclability[J]. RSC Adv, 2012, 2(17):6736-6740.
[33] Yu H J, Wu J H, Fan L Q, et al. Improvement of the Performance for Quasisolid-State Supercapacitor by Using PVA KOH KI Polymer Gel Electrolyte[J]. Electrochim Acta, 2011, 56(20):6881-6886.
[34] Tian Y, Yan J, Xue R, et al. Capacitive Properties of Activated Carbon in K4Fe(CN)6[J]. J Electrochem Soc, 2011, 158(7):A818-A821.
[35] Galiński M, Lewandowski A, Stpniak I. Ionic Liquids as Electrolytes[J]. Electrochim Acta, 2006, 51(26):5567-5580.
[36] Chen G Z. Perception of Supercapacitor and Supercapattery[C]//Electrochemical Capacitors:Fundamentals to Applications, 220th ECS Meeting, Massachusetts, Boston:2011.
[37] Sivakkumar S, Pandolfo A G. Evaluation of Lithium-Ion Capacitors Assembled with Pre-Lithiated Graphite Anode and Activated Carbon Cathode[J]. Electrochim Acta, 2012, 65:280-287.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%