欢迎登录材料期刊网

材料期刊网

高级检索

Toll样受体(Toll-like receptors,TLRs)是进化保守的天然免疫模式识别受体,能够识别外源的病原菌相关分子模式(Pathogen-associated molecular patterns,PAMPs)、内源的损害相关分子模式(Damage-associated molecular patterns,DAMPs)和异源物相关分子模式(Xenobiotic-associated molecular patterns),诱导炎症免疫反应。其中,TLR4(Toll-like receptor 4)是目前研究最为广泛的Toll样受体之一,TLR4是脂多糖(lipopoiysaccharide,LPS)的主要受体,LPS激活的TLR4信号通路在炎症信号的传递中发挥着重要作用,而此信号转导需要通过LPS与TLR4及其附属蛋白髓样分化因子2(myeloid differentiation factor 2,MD-2)的相互作用来实现。因此,TLR4/MD-2成为炎症反应和免疫调控最重要的研究热点。本文综述靶向TLR4/MD-2的小分子激动剂和抑制剂的研究进展,以进一步理解TLR4小分子调节剂与其相互作用的复杂性,帮助靶向TLR4/MD-2的免疫调节剂药物发现。

Toll-like receptors(TLRs) are evolutionarily conserved innate immunity receptor proteins that detect pathogen-associated molecular patterns(PAMPs), danger-associated molecular patterns(DAMPs) and xenobiotic-associated molecular patterns(XAMPs), triggering inflammatory responses. TLR4 is the main receptor for bacterial lipopolysaccharide(LPS) and the accessory protein myeloid differentiation factor 2(MD-2) is responsible for ligand recognition. LPS binding induces(TLR4-MD-2-LPS)2 and TLR4/MD-2 complex dimeriztion, which activates TLR4 signaling and produce pro-inflammatory factors. The dysregulation of innate immune TLR4 signaling contributes to numerous pathological diseases. Therefore, TLR4/MD-2 is emerging as an important drug discovery target. In this review, we summarize the up-to-date discovery of TLR4 small molecule modulators and provide insights into future drug discovery, which will be interesting to colleagues major in chemical biology, medicinal chemistry, signal transduction and translational medicine.

参考文献

[1] Takeuchi O, Akira S. Pattern Recognition Receptors and Inflammation[J]. Cell, 2010, 140(6):805-820.
[2] Bachtell R, Hutchinson M R, Wang X H, et al. Targeting the Toll of Drug Abuse:The Translational Potential of Toll-like Receptor 4[J]. CNS Neurol Disord Drug Targets, 2015, 14(6):692-699.
[3] Medzhitov R, Preston-Hurlburt P, Janeway C A, Jr. A Human Homologue of the Drosophila Toll Protein Signals Activation of Adaptive Immunity[J]. Nature, 1997, 388(6640):394-397.
[4] Jin M S, Kim S E, Heo J Y, et al. Crystal Structure of the TLR1-TLR2 Heterodimer Induced by Binding of a Tri-acylated Lipopeptide[J]. Cell, 2007, 130(6):1071-1082.
[5] Liu L, Botos I, Wang Y, et al. Structural Basis of Toll-like Receptor 3 Signaling with Double-stranded RNA[J]. Science, 2008, 320(5874):379-381.
[6] Kim H M, Park B S, Kim J I, et al. Crystal Structure of the TLR4-MD-2 Complex with Bound Endotoxin Antagonist Eritoran[J]. Cell, 2007, 130(5):906-917.
[7] Park B S, Song D H, Kim H M, et al. The Structural Basis of Lipopolysaccharide Recognition by the TLR4-MD-2 Complex[J]. Nature, 2009, 458(7242):1191-1195.
[8] Yoon S I, Kurnasov O, Natarajan V, et al. Structural Basis of TLR5-Flagellin Recognition and Signaling[J]. Science, 2012, 335(6070):859-864.
[9] Kang J Y, Nan X, Jin M S, et al. Recognition of Lipopeptide Patterns by Toll-like Receptor 2-Toll-like Receptor 6 Heterodimer[J]. Immunity, 2009, 31(6):873-884.
[10] Tanji H, Ohto U, Shibata T, et al. Structural Reorganization of the Toll-like Receptor 8 Dimer Induced by Agonistic Ligands[J]. Science, 2013, 339(6126):1426-1429.
[11] Tanji H, Ohto U, Shibata T, et al. Toll-like Receptor 8 Senses Degradation Products of Single-stranded RNA[J]. Nat Struct Mol Biol, 2015, 22(2):109-115.
[12] Ohto U, Shibata T, Tanji H, et al. Structural Basis of CpG and Inhibitory DNA Recognition by Toll-like Receptor 9[J]. Nature, 2015, 520(7549):702-705.
[13] Song W, Wang J, Han Z, et al. Structural Basis for Specific Recognition of Single-stranded RNA by Toll-like Receptor 13[J]. Nat Struct Mol Biol, 2015, 22(10):782-787.
[14] Wang J, Chai J, Wang H. Structure of the Mouse Toll-like Receptor 13 Ectodomain in Complex with a Conserved Sequence from Bacterial 23S Ribosomal RNA[J]. FEBS J, 2016, 283(9):1631-1635.
[15] Buchanan M M, Hutchinson M, Watkins L R, et al. Toll-like Receptor 4 in CNS Pathologies[J]. J Neurochem, 2010, 114(1):13-27.
[16] Li J, Wang X H, Zhang F C, et al. Toll-like Receptors as Therapeutic Targets for Autoimmune Connective Tissue Diseases[J]. Pharmacol Ther, 2013, 138(3):441-451.
[17] He W G, Liu Q Y, Wang L, et al. TLR4 Signaling Promotes Immune Escape of Human Lung Cancer Cells by Inducing Immunosuppressive Cytokines and Apoptosis Resistance[J]. Mol Immunol, 2007, 44(11):2850-2859.
[18] Szajnik M, Szczepanski M J, Czystowska M, et al. TLR4 Signaling Induced by Lipopolysaccharide or Paclitaxel Regulates Tumor Survival and Chemoresistance in Ovarian Cancer[J]. Oncogene, 2009, 28(49):4353-4363.
[19] Zeuke S, Ulmer A J, Kusumoto S, et al. TLR4-mediated Inflammatory Activation of Human Coronary Artery Endothelial Cells by LPS[J]. Cardiovasc Res, 2002, 56(1):126-134.
[20] Wang X, Smith C, Yin H. Targeting Toll-like Receptors with Small Molecule Agents[J]. Chem Soc Rev, 2013, 42(12):4859-4866.
[21] Kang S, Lee S P, Kim K E, et al. Toll-like Receptor 4 in Lymphatic Endothelial Cells Contributes to LPS-induced Lymphangiogenesis by Chemotactic Recruitment of Macrophages[J]. Blood, 2009, 113(11):2605-2613.
[22] Poltorak A, He X L, Smirnova I, et al. Defective LPS Signaling in C3H/HeJ and C57BL/10ScCr Mice: Mutations in Tlr4 Gene[J]. Science, 1998, 282(5396):2085-2088.
[23] Takeda K, Akira S. TLR Signaling Pathways[J]. Semin Immunol, 2004, 16(1):3-9.
[24] Wang J, Hu Y, Deng W W, et al. Negative Regulation of Toll-like Receptor Signaling Pathway[J]. Microbes Infect, 2009, 11(3):321-327.
[25] Shimazu R, Akashi S, Ogata H, et al. MD-2, a Molecule That Confers Lipopolysaccharide Responsiveness on Toll-like Receptor 4[J]. J Exp Med, 1999, 189(11):1777-1782.
[26] Viriyakosol S, Tobias P S, Kitchens R L, et al. MD-2 Binds to Bacterial Lipopolysaccharide[J]. J Biol Chem, 2001, 276(41):38044-38051.
[27] Nishitania C, Mitsuzawa H, Hyakushima N, et al. The Toll-like Receptor 4 Region Glu(24)-Pro(34) is Critical for Interaction with MD-2[J]. Biochem Biophys Res Commun, 2005, 328(2):586-590.
[28] Resman N, Vasl J, Oblak A, et al. Essential Roles of Hydrophobic Residues in Both MD-2 and Toll-like Receptor 4 in Activation by Endotoxin[J]. J Biol Chem, 2009, 284(22):15052-15060.
[29] Ohto U, Fukase K, Miyake K, et al. Structural Basis of Species-Specific Endotoxin Sensing by Innate Immune Receptor TLR4/MD-2[J]. Proc Natl Acad Sci USA, 2012, 109(19):7421-7426.
[30] Wang Y, Su L, Morin M D, et al. TLR4/MD-2 Activation by a Synthetic Agonist with no Similarity to LPS[J]. Proc Nat Acad Sci, 2016, 113(7):E884-E893.
[31] Stover A G, Da Silva Correia J, Evans J T, et al. Structure-activity Relationship of Synthetic Toll-like Receptor 4 Agonists[J]. J Biol Chem, 2004, 279(6):4440-4449.
[32] Dunn-Siegrist I, Tissieres P, Drifte G, et al. Toll-like Receptor Activation of Human Cells by Synthetic Triacylated Lipid A-Like Molecules[J]. J Biol Chem, 2012, 287(20):16121-16131.
[33] Peri F, Calabrese V. Toll-like Receptor 4(TLR4) Modulation by Synthetic and Natural Compounds:An Update[J]. J Med Chem, 2014, 57(9):3612-3622.
[34] Pantel A, Cheong C, Dandamudi D, et al. A New Synthetic TLR4 Agonist, GLA, Allows Dendritic Cells Targeted with Antigen to Elicit Th1 T-cell Immunity in Vivo[J]. Eur J Immunol, 2012, 42(1):101-109.
[35] Orr M T, Duthie M S, Windish H P, et al. MyD88 and TRIF Synergistic Interaction is Required for TH1-cell Polarization with a Synthetic TLR4 Agonist Adjuvant[J]. Eur J Immunol, 2013, 43(9):2398-2408.
[36] Mata-Haro V, Cekic C, Martin M, et al. The Vaccine Adjuvant Monophosphoryl Lipid A as a TRIF-biased Agonist of TLR4[J]. Science, 2007, 316(5831):1628-1632.
[37] Bowen W S, Minns L A, Johnson D A, et al. Selective TRIF-dependent Signaling by a Synthetic Toll-like Receptor 4 Agonist[J]. Sci Signal, 2012, 5(211):958-962.
[38] Mancek-Keber M, Jerala R. Postulates for Validating TLR4 Agonists[J]. Eur J Immunol, 2015, 45(2):356-370.
[39] Kawasaki K, Gomi K, Nishijima M. Cutting Edge: Gln22 of Mouse MD-2 is Essential for Species-Specific Lipopolysaccharide Mimetic Action of Taxol[J]. J Immunol, 2001, 166(1):11-14.
[40] Kawasaki K, Nogawa H, Nishijima M. Identification of Mouse MD-2 Residues Important for Forming the Cell Surface TLR4-MD-2 Complex Recognized by Anti-TLR4-MD-2 Antibodies, and for Conferring LPS and Taxol Responsiveness on Mouse TLR4 by Alanine-Scanning Mutagenesis[J]. J Immunol, 2003, 170(1):413-420.
[41] Resman N, Gradisar H, Vasl J, et al. Taxanes Inhibit Human TLR4 Signaling by Binding to MD-2[J]. FEBS Lett, 2008, 582(28):3929-3934.
[42] Hutchinson M R, Zhang Y N, Shridhar M, et al. Evidence that Opioids may have Toll-Like Receptor 4 and MD-2 Effects[J]. Brain Behav Immun, 2010, 24(1):83-95.
[43] Wang X H, Loram L C, Ramos K, et al. Morphine Activates Neuroinflammation in a Manner Parallel to Endotoxin[J]. PNAS, 2012, 109(16):6325-6330.
[44] Lewis S S, Hutchinson M R, Rezvani N, et al. Evidence that Intrathecal Morphine-3-Glucuronide may Cause Pain Enhancement via Toll-Like Receptor 4/Md-2 and Interleukin-1 Beta[J]. Neuroscience, 2010, 165(2):569-583.
[45] Loppnow H, Libby P, Freudenberg M, et al. Cytokine Induction by Lipopolysaccharide(LPS) Corresponds to Lethal Toxicity and is Inhibited by Nontoxic Rhodobacter Capsulatus LPS[J]. Infect Immun, 1990, 58(11):3743-3750.
[46] Christ W J, Asano O, Robidoux A L, et al. E5531, a Pure Endotoxin Antagonist of High Potency[J]. Science, 1995, 268(5207):80-83.
[47] Wasan K M, Strobel F W, Parrott S C, et al. Lipoprotein Distribution of a Novel Endotoxin Antagonist, E5531, in Plasma from Human Subjects with Various Lipid Levels[J]. Antimicrob Agents Chemother, 1999, 43(10):2562-2564.
[48] Rossignol D P, Lynn M. Antagonism of in Vivo and ex Vivo Response to Endotoxin by E5564, a Synthetic Lipid A Analogue[J]. J Endotoxin Res, 2002, 8(6):483-488.
[49] Mullarkey M, Rose J R, Bristol J, et al. Inhibition of Endotoxin Response by e5564, a Novel Toll-like Receptor 4-Directed Endotoxin Antagonist[J]. J Pharmacol Exp Ther, 2003, 304(3):1093-1102.
[50] Lynn M, Rossignol D P, Wheeler J L, et al. Blocking of Responses to Endotoxin by E5564 in Healthy Volunteers with Experimental Endotoxemia[J]. J Infect Dis, 2003, 187(4):631-639.
[51] Akashi S, Nagai Y, Ogata H, et al. Human MD-2 Confers on Mouse Toll-like Receptor 4 Species-Specific Lipopolysaccharide Recognition[J]. Int Immunol, 2001, 13(12):1595-1599.
[52] Muroi M, Tanamoto K. Structural Regions of MD-2 That Determine the Agonist-Antagonist Activity of Lipid IVa[J]. J Biol Chem, 2006, 281(9):5484-5491.
[53] Wang X, Cochran T A, Hutchinson M R, et al. Drug Addiction[M]. in Microglia in Health and Disease, Tremblay M-È and Sierra A, Editors. 2014, Springer New York:New York, NY. 299-317.
[54] Selfridge B R, Wang X, Zhang Y, et al. Structure-Activity Relationships of (+)-Naltrexone-inspired Toll-like Receptor 4 (TLR4) Antagonists[J]. J Med Chem, 2015, 58(12):5038-5052.
[55] Wang X, Zhang Y, Peng Y, et al. Pharmacological Characterization of the Opioid Inactive Isomers (+)-naltrexone and (+)-naloxone as Antagonists of Toll-like Receptor 4[J]. Br J Pharmacol, 2016, 173(5):856-869.
[56] Yamada M, Ichikawa T, Ii M, et al. Discovery of Novel and Potent Small-Molecule Inhibitors of NO and Cytokine Production as Antisepsis Agents:Synthesis and Biological Activity of Alkyl 6-(N-substituted sulfamoyl)cyclohex-1-ene-1-carboxylate[J]. J Med Chem, 2005, 48(23):7457-7467.
[57] Kawamoto T, Ii M, Kitazaki T, et al. TAK-242 Selectively Suppresses Toll-like Receptor 4-Signaling Mediated by the Intracellular Domain[J]. Eur J Pharmacol, 2008, 584(1):40-48.
[58] Takashima K, Matsunaga N, Yoshimatsu M, et al. Analysis of Binding Site for the Novel Small-Molecule TLR4 Signal Transduction Inhibitor TAK-242 and Its Therapeutic Effect on Mouse Sepsis Model[J]. Br J Pharmacol, 2009, 157(7):1250-1262.
[59] Mancek-Keber M, Jerala R. Structural Similarity Between the Hydrophobic Fluorescent Probe and Lipid A as a Ligand of MD-2[J]. FASEB J, 2006, 20(11):1836-1842.
[60] Youn H S, Saitoh S I, Miyake K, et al. Inhibition of Homodimerization of Toll-like Receptor 4 by Curcumin[J]. Biochem Pharmacol, 2006, 72(1):62-69.
[61] Gradisar H, Keber M M, Pristovsek P, et al. MD-2 as the Target of Curcumin in the Inhibition of Response to LPS[J]. J Leukocyte Biol, 2007, 82(4):968-974.
[62] Park S H, Kyeong M S, Hwang Y, et al. Inhibition of LPS Binding to MD-2 co-Receptor for Suppressing TLR4-mediated Expression of Inflammatory Cytokine by 1-Dehydro-10-Gingerdione from Dietary Ginger[J]. Biochem Biophys Res Commun, 2012, 419(4):735-740.
[63] Chu M, Ding R, Chu Z Y, et al. Role of Berberine in Anti-bacterial as a High-affinity LPS Antagonist Binding to TLR4/MD-2 Receptor[J]. BMC Complem Altern Med, 2014, 14(1):89-98.
[64] Chen Y F, Shiau A L, Wang S H, et al. Zhankuic Acid A Isolated from Taiwanofungus Camphoratus is a Novel Selective TLR4/MD-2 Antagonist with Anti-inflammatory Properties[J]. J Immunol, 2014, 192(6):2778-2786.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%