欢迎登录材料期刊网

材料期刊网

高级检索

与传统的雾化制粉技术不同,电极感应熔炼气体雾化( EIGA)技术是采用预合金棒料为电极,无坩埚感应加热,熔化后直接滴落雾化区被惰性气体雾化的技术.该技术由于在熔炼过程中液态金属与坩埚不接触,有效地减少了钛合金粉末中的夹杂物,改善了合金粉末的质量.本文利用自主设计制造的EIGA制粉设备,采用激光粒度分析仪、扫描电镜( SEM)、X射线衍射仪(XRD)等分析手段,研究了不同功率参数对雾化制备TC4合金粉末的粒度分布、组织形貌、空心球等的影响.研究表明:EIGA法制备的TC4合金粉末整体球形度均较好,空心球缺陷较少,空心球率低于3%.熔炼功率较低时,粗颗粒粉末较多,且存在一定比例不规则的棒形和哑铃状粉末颗粒;当功率提高到62 kW时,细粉比例明显提高,不规则形状的粉末颗粒基本消失.随着功率的升高,粉末中的氧含量呈增加趋势,但仍基本保持在0.08%~0.10%较低范围内.功率为56 kW时,粉末松装密度最好,为2.686 g/cm3,松装密度比为60.63%,符合激光3D打印用TC4钛合金粉末松装密度比要求.

Different from the traditional atomization technology, electrode induction melt inert gas atomization (EIGA) technology uses pre-alloy bar electrodes with crucibleless induction heating, dripping directly atomization area and then atomized by inert gas. Because the liquid metal during the melting process does not contact with the crucible, the inclusions in the titanium alloy powder can be effectively reduced, and the quality of the alloy powder can be improved. By means of the EIGA equipment designed and developed by ourselves, the effects of power parameter on the properties of TC4 alloy powder, such as size distribution, microstructure and morphology, hollow power were characterized by laser particle size analyzer, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the TC4 alloy powder prepared by EIGA has better sphericity, less hollow ball defects and less than 3% hollow spheres. At lower melting power, there are more coarse particles and a certain percentage of the dumbbell-shaped and rod powder particles. When the melting power increases to 62 kW, it can be seen that the proportion of fine powder improves obviously and the particles with irregular shapes almost disappear. With the increase of melting power, the oxygen content of the powder shows an increasing trend, but still remains at a low range of 0.08%~0.10%. When the power is 56 kW, the powder has the best apparent density of 2.686 g/cm3 with the apparent density ratio of 60.63%, which meets the requirements for laser 3D printing.

参考文献

[1] Visser, Claas Willem;Pohl, Ralph;Sun, Chao;Roemer, Gert-Willem;in 't Veld, Bert Huis;Lohse, Detlef.Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer[J].Advanced Materials,201527(27):4087-4092.
[2] 赵少阳;陈刚;谈萍;王建;刘晓青.球形TC4粉末的气雾化制备、表征及间隙元素控制[J].中国有色金属学报,2016(5):980-987.
[3] 周洪强;陈志强.钛及钛合金粉末的制备现状[J].稀有金属快报,2005(12):11-16.
[4] 余勇;曾归余;肖明清;乐晨;欧建雄.不同工艺对真空气雾化Ni粉粒度的影响研究[J].粉末冶金工业,2015(1):38-41.
[5] 刘文胜;彭芬;马运柱;崔鹏;陈仕奇;刘有长.工艺条件对气雾化制备SnAgCu合金粉末特性的影响[J].中国有色金属学报,2009(6):1074-1079.
[6] Yu, Qian;Qi, Liang;Tsuru, Tomohito;Traylor, Rachel;Rugg, David;Morris, J. W., Jr.;Asta, Mark;Chrzan, D. C.;Minor, Andrew M..Origin of dramatic oxygen solute strengthening effect in titanium[J].Science,2015Feb.6 TN.6222(Feb.6 TN.6222):635-639.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%