欢迎登录材料期刊网

材料期刊网

高级检索

针对现有蓝宝石光纤温度传感器测温上限难以突破1700℃的瓶颈问题,本文分别从传感器测温结构和感温材料两方面进行了分析改进,以满足对2000~2500℃超高温的测量需求。提出了一种接触-非接触相结合的新型传感器测温结构,并结合非接触式测温结构特点给出了Plank黑体辐射温度误差补偿公式,解决了非接触结构的准确测温问题。结合不同感温材料特性分别对难熔金属、陶瓷基复合材料和C/C复合材料的高温性能进行分析比较,包括材料强度、密度、抗氧化性、塑性、熔点等,筛选出适合作为超高温传感器的备选感温材料。针对筛选出的感温材料设计了抗热震性试验和抗氧化烧蚀试验,实验结果表明HfB2-SiC复合材料能够满足超高温环境下对感温材料物理特性的特殊需求。传感器温度试验结果表明,采用接触-非接触式新结构和HfB2-SiC感温材料的新型光纤温度传感器可对2500℃高温进行长时间稳定测量,测量精度达到±1%。

In order to overcome the measurable temperature limitation, about 1 700 ℃, of existing sapphire fiber temperature sensors, the improvements in the temperature?sensitive material and structure for the sensors are presented to obtain the measurement of ultrahigh temperature range of 2 000~ 2 500℃. On one hand, a new sensor design with a contact?noncontact structure is proposed. According to the blackbody radiation based temperature measuring theory, an error compensation for Plank formula is established to accurately measure the temperature of the noncontact structure. On the other hand, material properties including strength, density, oxidation resistance, plasticity, melting point, etc and ultrahigh temperature heat responses of the refractory metal are analyzed. The thermal shock resistance test and oxidation resistance test results demonstrate that HfB2-SiC can fully meet the requirement of ultrahigh temperature measurement. Finally, the new sensor can perform longtime steady measurement at the temperature of 2 500℃ with the precision of ±1%.

参考文献

[1] 郝晓剑;郝丽娜;周汉昌;姜三平;李园.瞬态表面温度传感器超高温外推测试技术研究[J].兵工学报,2013(10):1341-1344.
[2] K. T. V. Grattan;Z. Y. Zhang;T. Sun;Yonghang Shen;Limin Tong;Zhuchang Ding.Sapphire-ruby single-crystal fibre for application in high temperature optical fibre thermometers: studies at temperatures up to 1500°C[J].Measurement Science & Technology,20017(7):981-986.
[3] 阎涛;赵靖;袁玉华;王志浩.高温蓝宝石光纤温度传感器校准测试系统研究[J].电子设计工程,2013(9):114-116,119.
[4] 马道胜;樊叶利;陈鹏.超高温陶瓷复合材料的研究发展[J].化工管理,2015(35):182.
[5] 李增峰;张晗亮;汤慧萍;向长淑;黄愿平;李爱君;刘海彦;石英.铱合金的高温氧化行为[J].金属热处理,2012(10):12-16.
[6] 刘东亮;金永中;邓建国.超高温陶瓷材料的抗氧化性[J].陶瓷学报,2010(1):151-157.
[7] Rubing Zhang;Xiangmeng Cheng;Daining Fang;Liaoliang Ke;Yuesheng Wang.Ultra-high-temperature tensile properties and fracture behavior of ZrB_2-based ceramics in air above 1500℃[J].Materials & design,2013Dec.(Dec.):17-22.
[8] Eric W. Neuman;Gregory E. Hilmas;William G. Fahrenholtz.Strength of Zirconium Diboride to 2300°C[J].Journal of the American Ceramic Society,20131(1):47-50.
[9] Eric W. Neuman;Gregory E. Hilmas;William G. Fahrenholtz.Mechanical behavior of zirconium diboride-silicon carbide ceramics at elevated temperature in air[J].Journal of the European Ceramic Society,201315/16(15/16):2889-2899.
[10] 张国军;邹冀;倪德伟;刘海涛;阚艳梅.硼化物陶瓷:烧结致密化、微结构调控与性能提升[J].无机材料学报,2012(3):225-233.
[11] 郭朝邦.HfB2材料研究进展[J].战术导弹技术,2010(4):32-35,47.
[12] Mehdi Shahedi Asl;Mahdi Ghassemi Kakroudi;Seyedreza Noori.Hardness and toughness of hot pressed ZrB_2-SiC composites consolidated under relatively low pressure[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2015:481-487.
[13] Jia Lin;Xinghong Zhang;Shun Dong;Yang Yang;Wenbo Han;Hua Jin.Effects of sintering velocity on the microstructure and mechanical properties of hot-pressed ZrB_2-SiC-ZrO_(2f) ceramics[J].Materials & design,2013Aug.(Aug.):681-686.
[14] Ji Zou;Guo-Jun Zhang;Jef Vleugels.High temperature strength of hot pressed ZrB_2-20 vol% SiC ceramics based on ZrlB_2 starting powders prepared by different carbo/boro-thermal reduction routes[J].Journal of the European Ceramic Society,201310(10):1609-1614.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%