欢迎登录材料期刊网

材料期刊网

高级检索

针对制备高强韧 Fe-1.55C-1.14Cr-1.15Al 超高碳钢过程中等温退火工艺的不足,提出先以普通正火来代替等温退火,然后再进行球化的热处理工艺,研究了正火、球化温度对试验钢显微组织的影响,并确定了较佳的正火及球化工艺.结果表明:随着正火温度的升高,试验钢组织中的片状珠光体片层间距增大,网状碳化物减少,采用1050℃×20 min 的正火工艺可替代等温退火来细化组织;试验钢的共析转变开始温度为790℃,在该温度及以上出现了大量的球状碳化物,且随温度升高球化越完全,在750~810℃球化会出现三相组织(F-A-Fe3 C);适宜的球化工艺为850℃保温1 h,新工艺处理后的奥氏体转变完全,球状碳化物弥散分布在奥氏体基体中.

In view of the shortage of the isothermal annealing process during the preparation of Fe-1.55C-1.14Cr-1.1 5Al ultra-high carbon steel with high strength and toughness,the treatment process composed of first with normalizing instead of isothermal annealing and then spheroidizing was presented.The effects of normalizing temperatures and spheroidizing temperatures on the microstructures of tested steels were studied,and then a relatively optimum normalizing and spheroidizing process was determined.The results show that with the increase of normalizing temperature,the lamellar spacing of pearlite in the microstructure of the tested steel increased and the amounts of net-like carbide decreased.The fined microstructure can be obtained after the substitution treatment of normalizing at 1 050 ℃ for 20 min for isothermal annealing.The eutectoid transformation temperature of the tested steel was 790 ℃.At or beyond the temperature,a lot of spheroidized carbides were observed and the spheroidizing completed better and better with the increase of the temperature.The triphase microstructure (F-A-Fe3 C)appeared at the temperature between 750 ℃ and 810 ℃ during the spheroidizing process.The appropriate spheroidization process was heating at 850 ℃ for 1 h.The austenite transformed completely and the spheroidized carbides distributed dispersively in austenite substrate after treated with the new process.

参考文献

[1] Oleg D. SHERBY.Ultrahigh Carbon Steels, Damascus Steels and Ancient Blacksmiths[J].ISIJ International,19997(7):637-648.
[2] 石淑琴;陈光;傅万堂;牧正志.Fe-1.5C-1.5Cr-2.0Al超高碳钢的等温组织及力学性能[J].天津大学学报,2007(5):629-633.
[3] Hong-Sheng Fang;Xiang-Zheng Bo;Jia-Jun Wang.A model for surface reliefs formation in bainite transformation mechanism[J].Materials transactions,199812(12):1264-1271.
[4] 王玮;刘庆锁;王晓薇;吴晓红.超高碳钢中束状贝氏体的形成模式[J].机械工程材料,2014(6):6-10,74.
[5] 赵芳霞;陈强;石淑琴;张振忠.1.5%C超高碳钢等温淬火组织在回火过程中的转变[J].热加工工艺,2012(24):186-188.
[6] 石淑琴;张振忠;陈光.超细晶超高碳钢的化学成分设计[J].兵器材料科学与工程,2002(6):57-60.
[7] 陈强;赵芳霞;石淑琴;张振忠.Fe-1.3C-1.5Cr-1.5Al超高碳钢等温淬火组织与性能研究[J].铸造技术,2011(4):478-482.
[8] 石淑琴;王宝奇;古原忠;牧正志;陈光.超高碳钢的回火组织及力学性能[J].钢铁研究学报,2006(3):38-41.
[9] 石淑琴;谷南驹;古原忠;牧正志;陈光.铝元素抑制超高碳钢中网状碳化物析出机理[J].材料热处理学报,2005(4):79-82.
[10] 石淑琴;王宝奇;古原忠;牧正志.超高碳钢化学成分中铝含量的合理选择[J].兵器材料科学与工程,2005(6):26-30.
[11] 陈云祥;石淑琴;张伟.超高碳钢高温回火组织转变机理研究[J].金属热处理,2011(5):10-13.
[12] 王宝奇;彭会芬;宋晓艳;李红娟;谷南驹;石淑琴.锻造超高碳钢的球化工艺与力学性能[J].材料热处理学报,2004(1):27-31.
[13] 王悔改;张占领.热处理工艺对超高碳钢显微组织及磨损性能的影响[J].铸造技术,2011(4):483-486.
[14] 曹海玲;樊亚军;张占领;朱杰武;柳永宁;许雁.热轧超高碳钢的显微组织与力学性能[J].机械工程材料,2008(1):13-16.
[15] 王宝奇;王舒;范振霞;张翔.超高碳钢二阶段等温淬火组织与性能[J].热处理技术与装备,2012(6):20-24,31.
[16] 王玮;刘庆锁;严泽生;张传友;由臣.Fe-1.44%C-1.52%Cr-0.32%Si-0.62%Mn超高碳钢中温相变特征研究[J].材料科学与工艺,2013(3):63-68.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%