欢迎登录材料期刊网

材料期刊网

高级检索

含铌铁水通过脱碳保铌探索作为合金化元素回收铁水中铌并直接冶炼为含铌微合金钢的方法。试验在真空碳管炉内进行,铁水温度为1500℃,氧化剂为Fe2O3,真空度为10 Pa,分别进行有SiO2-CaO-Al2O3系造渣剂、无渣真空氧化冶炼研究。结果表明:在无渣条件下,加入Fe2O3铁水中硅、铌和碳同时氧化,不能脱碳保铌;加入造渣剂时,造渣剂的碱度越低,铁水中的硅氧化量越低,碳氧化量越高,碳质量分数最低下降到0.032%,铌质量分数最低值从0.09%下降到0.082%;碱度越高,铁水中硅氧化量越高,铌的氧化量也越高;真空氧化冶炼能够促进碳氧化,减少硅的氧化,抑止铌氧化。在50 kg级真空感应电炉内成功进行了回收铁水中铌直接冶炼为含铌钢试验,为回收含铌铁水中的铌提供新方法,也为工业化直接冶炼含铌钢提供试验依据。

As a micro-alloyed element,Nb was recovered to made Nb-bearing microalloyed steel from Nb-bearing hot metal in a vacuum carbon tube furnace by decarburization and conversation of niobium with Fe2O3 oxidant at 1 500℃. The results show that when slag isn't placed on the hot metal,silicon,niobium and carbon are oxidized simultaneously, which cannot make Nb-bearing steel. When basicity of SiO2-CaO-Al2O3 flux decreases,oxidation of silicon decreases, and decarburization is easy to complete in the molten iron and the oxidization of niobium is suppressed in the metal bath. By the way,carbon content of the molten iron is decreased to 0.032%and niobium content is decreased from 0.09%to 0.082%. When the basicity of SiO2-CaO-Al2O3 flux decreases,the lower silicon and niobium oxidize,the higher carbon oxidizes. On the other hand,when the vacuum of the furnace is lowed to 10 Pa,oxidization of silicon and niobium of Nb-bearing hot metal is suppressed and oxidization of carbon increases. By the test of the vacuum condition and acid SiO2-CaO-Al2O3 slag formed at 1 500℃,50 kg scale experiments have been completed and it is important not only to provide laboratory findings of commercial test for recovery of niobium from Nb-bearing hot metal to make Nb-bearing microal-loyed steel but also to provide a new method to recover Nb from Nb-bearing hot metal.

参考文献

[1] 姬云波,童雄,叶国华.提钒技术的研究现状和进展[J].国外金属矿选矿,2007(05):10-13,37.
[2] 邓君,薛逊,刘功国.攀钢钒钛磁铁矿资源综合利用现状与发展[J].材料与冶金学报,2007(02):83-86,93.
[3] 陈永定;邓开文;钱国钧 .氧气底吹转炉吹炼含铌磷铁水提铌[J].钢铁,1981,16(05):10.
[4] 徐掌印,赵增武,李保卫,李楠,路建法.含铌铁水预处理脱硅保铌的研究[J].钢铁研究学报,2013(03):14-17.
[5] 张波,姜茂发.利用白云鄂博含铌尾矿制备铌铁工艺的研究[J].工业加热,2011(03):56-59.
[6] 屈乃琴;陈久录.铌的应用现状与展望[J].世界有色金属,1998(11):13.
[7] 王艳萍.钒钛资源国内外供需形势及承德地区的开发利用前景分析[J].西部资源,2007(04):11.
[8] 杨春政.新一代钢铁流程运行实践[J].钢铁,2014(07):30-40.
[9] 武拥军,姜周华,梁连科,姜茂发,黄宗泽,陈兆平.不锈钢冶炼过程中相关热力学问题的解析(Ⅲ)--含铬铁水的去碳保铬及脱气[J].钢铁研究学报,2003(05):1-4.
[10] 王一德,徐芳泓.铁水为主要原料的不锈钢冶炼新工艺的开发[J].特殊钢,2006(03):35-38.
[11] 池和冰,邵世杰,李冬刚.AOD全铁水冶炼铁素体不锈钢工艺研究[J].宝钢技术,2008(02):16-20,30.
[12] 姜银举,蔺瑞,方永辉,徐掌印,李保卫.包钢现阶段生产工艺流程中铌的走向分析[C].2007年中国钢铁年会,2007
[13] 邵象华 .包钢铁水提铌工艺研究[J].钢铁,1982,17(02):23.
[14] 陈永定;邓开文;钱国钧 .氧气底吹转炉吹炼含铌磷铁水提铌[J].钢铁,1981,16(05):10.
[15] 李闯,郭汉杰.铁水中初始硅含量对铁水预处理中同时脱除硅、锰、磷、硫的影响[J].特殊钢,2010(06):35-38.
[16] 杨中东,刘素兰,薛向欣,李哲夫.含硼高硅铁水脱硅时硼的氧化[J].钢铁研究学报,2007(11):13-17.
[17] 林宗彩;周荣章 .铌及其他有关元素在铁液中的选择性氧化[J].钢铁,1982,17(02):31.
[18] 梁英教;车荫臣.无机热力学数据手册[M].沈阳:东北工业大学出版社,1994:454.
[19] 黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,2010
[20] 王海川,张友平,郭上型,陈二保,董元篪.铁水氧势对铁水预处理脱硅脱磷的影响[J].钢铁研究学报,2000(06):11-15.
[21] Farshid PAHLEVANI;Hiroyuki SHIBATA;Nobuhiro MARUOKA .Behavior of Vanadium and Niobium during Hot Metal Dephosphorization by CaO-SiO_2-Fe_tO Slag[J].ISIJ International,2011(10):1624-1630.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%