欢迎登录材料期刊网

材料期刊网

高级检索

采用座滴法测定固液间接触角,分别对镁碳质基片及基片中的两种主要组元与LF精炼渣之间的润湿性进行了研究,并从润湿性角度研究了镁碳砖损毁机理。研究表明,在精炼温度下,熔渣对石墨均呈不润湿状态,温度越低越不容易润湿。而熔渣对MgO组元呈完全润湿状态。熔渣与镁碳质基片间的接触角在温度为1460~1480℃时存在明显转折,在转折点温度以下,MgO和碳的反应受到抑制,熔渣对基片保持不润湿状态。在转折点温度以上,镁碳质基片中的MgO和碳发生反应生成镁蒸汽和CO气体。该反应导致基片内碳质量分数减少,熔渣对基片的接触角迅速下降,最终呈完全润湿。当熔渣与基片间的接触角小于90°时,熔渣将对基片产生明显渗透作用。MgO与碳反应形成的孔隙成为熔渣渗透的主要通道。熔渣渗透到镁碳质基片内部的未反应层时,由于两者之间的不润湿性及较少的孔隙阻碍了熔渣的进一步渗透。

In order to investigate the wear mechanism of MgO-C brick from the point of wettability,the sessile drop method was employed to measure the contact angle between liquid and solid phase. The wettability between MgO-C sub-strate as well as two main components in the substrate and LF refining slag was studied. At the refining temperature, graphite substrate was not wetted by the molten slag,and the lower temperature it was,the more non-wetting it became. While the MgO component was completely wetted by the slag. There was an obvious turning point of contact angle be-tween molten slag and MgO-C substrate in the range of 1 460℃and 1 480℃. Below the turning point,the reaction be-tween MgO and C was restrained for the lower temperature,and the MgO-C substrate kept un-wetted by molten slag. Above the turning point,the MgO reacted with carbon,and Mg vapor and CO gas were generated. The carbon content was reduced for the reaction,leading to the fast decrease of contact angle between molten slag and substrate. Once the contact angle was smaller than 90° ,the molten slag penetrated into the substrate. The pores formed by the reaction be-tween MgO and carbon became the main channel for the penetration of slag. When the slag penetrated into the substrate and reached at the interface of unreacted layer,the non-wetting property between the slag and unreacted layer and few pores prevented the further penetration of slag.

参考文献

[1] 李亮;王世峰;陈士冰.镁碳砖发展及生产工艺改进的研究[J].山东轻工业学院学报(自然科学版),2010(3):25-28.
[2] 魏耀武;徐静波;徐煙;陈国威;李楠.精炼钢包渣线镁碳砖被侵蚀的显微分析[J].硅酸盐通报,2009(1):185-188,199.
[3] 李培;田琳.不同碳含量对镁碳砖性能的影响[J].耐火与石灰,2012(1):7-9,13.
[4] 呼伟;尹洪峰;史绪波;刘小团.不同基质结合镁碳砖对炉渣的抗侵蚀性研究[J].硅酸盐通报,2011(1):200-204,209.
[5] M. Guo;S. Parada;P.T. Jones.Interaction of Al_2O_3-rich slag with MgO-C refractories during VOD refining-MgO and spinel layer formation at the slag/refractory interface[J].Journal of the European Ceramic Society,20096(6):1053-1060.
[6] Zhangfu YUAN;Yan WU;Hongxin ZHAO.Wettability between Molten Slag and MgO-C Refractories for the Slag Splashing Process[J].ISIJ International,20134(4):598-602.
[7] 潘贻芳;赵宏欣;吴燕;李树庆;侯葵;袁章福.转炉渣与镁质耐火材料的润湿机制[J].钢铁,2013(5):35-40.
[8] 杜景云;马北越;聂立诚;严永亮;于景坤.钢水温度和碳对镁铝尖晶石质耐火材料侵蚀的影响[J].中国冶金,2007(12):32-36.
[9] Abdeyazdan, Hamed;Dogan, Neslihan;Rhamdhani, M. Akbar;Chapman, Michael W.;Monaghan, Brian J..Dynamic Wetting of CaO-Al2O3-SiO2-MgO Liquid Oxide on MgAl2O4 Spinel[J].Metallurgical and Materials Transactions, B. Process Metallurgy and Materials Processing Science,20151(1):208-219.
[10] 王恩泽;王恩万;邢建东;鲍崇高.涂层对氧化铝/耐热钢液间湿润角的影响及其应用[J].西安交通大学学报,2000(11):78-81.
[11] 陈肇友.炉外精炼用耐火材料提高寿命的途径及其发展动向[J].耐火材料,2007(01):1-12.
[12] 徐建飞;王新华;黄福祥;刘春阳.KR脱硫渣矿相及硫在渣中分布[J].钢铁,2015(1):15-18.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%