欢迎登录材料期刊网

材料期刊网

高级检索

采用熔融法制样,建立了X射线荧光光谱法(XRF )测定铁矿石中14种组分(T Fe、CaO、SiO2、MgO、Al2O3、MnO、TiO2、K2O、Na2O、Ni、Cu、Co、P、S)含量的方法。通过试验确定熔解铁矿石最佳的熔剂为混合熔剂[m(Li2 B4 O7)∶ m(LiBO2)=67∶33],稀释比为1∶20,预氧化条件为700℃下预氧化10 min。此措施很好地解决了低含量元素和轻元素因熔剂影响而测量强度下降的问题。使用理论α系数和经验系数法相结合进行校正,有效地消除了基体效应和重叠谱线干扰的影响,校正后校准曲线的离散度(RM S )较小。各组分的检出限在0.61~335.09μg/g之间。对铁矿石试样进行精密度考察,各组分含量的相对标准偏差在0~8.7%范围内;对铁矿石标准样品进行分析,各组分的测定值与认定值相符。相对于其他铁矿石分析的XRF方法,实验方法可用于Co、Ni、Cu及难于准确测量的Na和S的测定,且满足进出口商品检验工作对效率和准确度的要求。

T he determination method of 14 components (including T Fe ,CaO ,SiO2 ,M gO ,Al2 O3 ,M nO , TiO2 ,K2 O ,Na2 O ,Ni ,Cu ,Co ,P and S) in iron ore by X‐ray fluorescence spectrometry (XRF) with fusion sample preparation was established .The optimal flux for the decomposition of iron ore was mixed flux [m(Li2B4O7)∶ m(LiBO2)=67∶33] with dilution ratio of 1∶20 .The sample was pre‐oxidized at 700 ℃for 10 min .The problem of measurement strength decrease of low content elements and light elements caused by flux could be w ell solved .T he matrix effect and spectral overlapping interference could be effec‐tively eliminated after the use of theoretical α coefficient method and empirical coefficient method correc‐tion .The root mean square (RMS) of calibration curve after correction was small .The detection limits of testing components were between 0.61 μg/g and 335.09 μg/g .The precision test of iron ore sample was also conducted .The relative standard deviations (RSD) were between 0 and 8.7% .The certified reference material of iron ore was analyzed according to the experimental method ,and the found results of each com‐ponent were consistent with the certified values .Compared to other XRF methods for the analysis of iron ore ,the proposed method was applicable for the determination of Co ,Ni and Cu ,and also Na and S which were difficult to be accurately determined .Moreover ,it could meet the requirements of inspection efficien‐cy and accuracy for import and export commodities .

参考文献

[1] 闵红;任丽萍;秦晔琼;周海明;朱志秀.铁矿石中全铁含量分析的研究进展[J].冶金分析,2014(4):21-26.
[2] 丁仕兵;曲晓霞;岳春雷.X-射线荧光光谱法测定铁矿石中全铁[J].冶金分析,2006(3):96-97.
[3] 李国会;马光祖;罗立强.X 射线荧光光谱分析中不同价态硫对测定硫的影响及地质试样中全硫的测定[J].岩矿测试,1994(04):264.
[4] 应海松;王松青;孙锡丽;应晓浒.进口铁矿中锰含量测定方法的改进[J].检验检疫科学,2002(6):37-38,25.
[5] 杨红;王新海;周德云;赵蕴智.X射线荧光光谱法测定铁矿石中As含量[J].冶金分析,2003(5):62-64.
[6] 宋洪霞.利用X荧光仪测定铁矿中的S,Pb,Zn,As的含量[J].福建分析测试,2008(01):64-67.
[7] 尹静;黄睿涛.粉末压片制样-X射线荧光光谱法测定铁矿石中锌砷锰[J].岩矿测试,2011(4):491-493.
[8] 普旭力;吴亚全;王鸿辉;董清木;蔡鹭欣;潘忠厚.X射线荧光光谱法同时测定铁矿石中主次量组分[J].岩矿测试,2008(5):353-356.
[9] 李小青.X射线荧光光谱法测定铁矿石的化学成分[J].理化检验-化学分册,2008(10):962-964,968.
[10] 曹玉红;高卓成;曹玉霞.熔融制样-X射线荧光光谱法测定磁铁矿中7种组分[J].冶金分析,2013(6):18-22.
[11] 李升;李锦光.X射线荧光光谱-玻璃熔融制样法分析铁矿中主成分和微量成分[J].光谱实验室,1999(3):345.
[12] 许鸿英;张继丽;张艳萍;冀云柱.X射线荧光光谱分析多矿源铁矿石中9种成分[J].冶金分析,2009(10):24-27.
[13] 欧阳伦熬.X射线荧光光谱法测定多种铁矿和硅酸盐中主次量组分[J].岩矿测试,2005(04):303-306.
[14] 廖海平;付冉冉;任春生;余清;张爱珍.X射线荧光光谱法测定铁矿石中全铁及18个次量成分[J].冶金分析,2011(5):36-40.
[15] 张莉娟;徐铁民;李小莉;安树清;韩伟;张楠;刘义博.X射线荧光光谱法测定富含硫砷钒铁矿石中的主次量元素[J].岩矿测试,2011(6):772-776.
[16] 高健民;董淑风;曲志勇;王海涛;王家春.X射线荧光光谱法测定铁矿中11种成分[J].分析测试学报,2012(z1):278-282.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%