欢迎登录材料期刊网

材料期刊网

高级检索

2‐(5‐溴‐2‐吡啶偶氮)‐5‐二乙氨基苯酚(5‐Br‐PADAP)光度法应用于矿石中铅的测定时,Cu、Zn、Fe、Ni、Bi、Mn、Cd、Co、V、Ti、Nb和Ta等多种元素的干扰不容忽视。针对这一问题,实验提出了采用KHSO4沉淀法对样品进行前处理,5‐Br‐PADAP光度法测定矿石中Pb的方法。实验表明,采用盐酸‐硝酸体系溶解矿石后,加入10 m L 200 g/L K H S O4溶液,放置20 min后即可见样品中的铅沉淀完全从而与上述离子分离;将沉淀过滤后,采用 pH 5.6的HAc‐NaAc缓冲溶液溶解沉淀,可使K2 SO4?PbSO4复盐沉淀溶解,从而与Ba、W、Sr和Ca等元素分离。在样品溶液中依次加入0.4 mL pH 9.3 H3BO3‐KCl‐NaOH缓冲溶液、0.4 mL饱和KI溶液、0.4 mL 10%(V∶V)Trion X‐100溶液、1.0 mL 0.03 g/L 5‐Br‐PADAP乙醇溶液,于1 cm比色皿中,在波长558 nm处进行测定,Pb质量浓度在0.02~2μg/mL 范围内符合比尔定律,线性回归方程的相关系数为0.998。方法检出限为0.02μg/m L。采用实验方法分别对铅矿、锌矿、铅锌矿标准物质中的Pb进行分析,测得结果与认定值基本一致,相对标准偏差(RSD ,n=11)为2.3%~5.8%。

During the determination of lead in ore by 2‐[(5‐bromine‐2‐pyridine)‐azo]‐5‐diethylaminophenol (5‐Br‐PADAP) spectrophotometry ,the interference of many elements (such as Cu ,Zn ,Fe ,Ni ,Bi ,Mn , Cd ,Co ,V ,Ti ,Nb and Ta) could not be ignored .To solve this problem ,the sample was pretreated by KHSO4 precipitation method .Then ,the content of lead in ore was determined by 5‐Br‐PADAP spectro‐photometry .The results showed that the lead in sample could be fully precipitated and separated from ions above by adding 10 mL 200 g/L KHSO4 solution and placing for 20 min after dissolving the ore with hydro‐chloric acid‐nitric acid system .After filtration ,the K2 SO4 ? PbSO4 composite salt precipitation was dis‐solved with HAc‐NaAc buffer solution at pH 5.6 ,realizing the separation from Ba ,W ,Sr and Ca .Then , 0.4 mL of H3BO3‐KCl‐NaOH buffer solution at pH 9.3 ,0.4 mL of saturated KI solution ,0.4 mL of 10%(V ∶V ) Trion X‐100 solution and 1.0 mL of 0.03 g/L 5‐Br‐PADAP ethanol solution were added into sam‐ple solution successively .The content of lead was determined in 1 cm cuvette at 558 nm .The Beer's law was obeyed for Pb with mass concentration in range of 0.02‐2 μg/mL .The correlation coefficient of linear regression equation was 0.998 .The detection limit was 0.02μg/mL .The proposed method was applied to the determination of Pb in certified reference materials of lead ore ,zinc ore and lead‐zinc ore .The found results were basically consistent with the certified values .The relative standard deviations (RSD ,n=11) were between 2.3% and 5.8% .

参考文献

[1] 李燕群.原子吸收光谱法在重金属铅镉分析中的应用进展[J].冶金分析,2008(06):33-41.
[2] 文婧;孙洪章;卢静华.火焰原子吸收光谱法测定针状石油焦中钾铅镁锌铜锰[J].冶金分析,2015(3):46-50.
[3] 冯先进.微波等离子体原子发射光谱法测定直接法氧化锌中铜铅铁镉锰[J].冶金分析,2014(8):58-62.
[4] 卢彦;冯勇;李刚;刘卫.酸溶-电感耦合等离子发射光谱法测定密西西比型铅锌矿床矿石中的铅[J].岩矿测试,2015(4):442-447.
[5] 李志伟.EDTA络合滴定法快速测定含钡铅矿石中的铅[J].岩矿测试,2013(06):920-923.
[6] 胡亮;陈加希;王鲁民;王倩;林连兵.双硫腙水相光度法快速测定水中微量铅[J].昆明理工大学学报(理工版),2007(6):81-83.
[7] 范晓燕;董杰.Pb(Ⅱ)-双硫腙-PAR水相光度法测定样品中铅[J].理化检验-化学分册,2001(6):258-260.
[8] 王金鹏;杜芳艳;刘慧瑾.5-Br-PADAP分光光度法测定食品中的微量铅[J].光谱实验室,2012(5):2703-2706.
[9] 于建忠;于凯妍;史晓燕;彭芮.BP人工神经网络分光光度法同时测定铜精矿中铅和锌[J].冶金分析,2009(3):52-55.
[10] 石磊;薛宁.分光光度法测定金属镁中微量钒[J].分析试验室,2014(8):981-983.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%