欢迎登录材料期刊网

材料期刊网

高级检索

油类样品易燃易爆,在对其中较低含量金属元素进行分析时极易引起被测元素损失且一般进样系统无法对其直接测定,因此测定时样品的前处理过程非常重要。实验取100 mL航空煤油样品于500 mL分液漏斗中,加入2.0 mL碘-二甲苯溶液和15 mL硝酸(1+9)重复萃取2次,将两次萃取液合并后再用10 mL水萃取一次,萃取液浓缩后采用火焰原子吸收光谱法( FAAS)进行测定,建立了测定航空煤油中铅、锰、镁、锌和铜5种元素含量的方法。结果表明:铅、锰、镁、锌和铜5种金属元素校准曲线的相关系数均大于0.9990,方法检出限为0.009~0.256μg/mL。采用实验方法对航空煤油样品进行测定,测定结果与电感耦合等离子体原子发射光谱法(ICP-AES)基本一致,相对标准偏差(RSD,n=9)为0.86%~5.4%。将实验方法应用于4个不同产地的航空煤油样品中铅、锰、镁、锌和铜的测定,各个元素的加标回收率均在96%~103%之间。

The oil samples were flammable and combustible. As a result, it is easy to loss for low content metal ele-ments in the analysis process. In addition, the direct determination could not be realized in common sampling sys-tem. Therefore, the pretreatment process of sample was very important for determination. 100 mL of aviation kero-sene was sampled into 500 mL separatory funnel. Then, 2. 0 mL of iodine-dimethylbenzene solution and 15 mL of nitric acid (1+9) were added for extraction twice. The extract liquor in two extraction operations was mixed fol-lowed by extraction with 10 mL of water. After concentration, the final extract liquor was determined by flame a-tomic absorption spectrometry ( FAAS ) . Consequently, a determination method of five elements in aviation kerosene including lead, manganese, magnesium, zinc and copper was established. The results showed that the correlation coefficients of calibration curves of five elements above were all higher than 0 . 999 0 . The detection lim-its of method were between 0. 009 μg/mL and 0. 256 μg/mL. The aviation kerosene sample was determined ac-cording to the experimental method. The results were basically consistent with those obtained by inductively coupled plasma atomic emission spectrometry (ICP-AES). The relative standard deviations (RSD, n=9) were between 0. 86% and 5. 4%. The proposed method was applied to the determination of lead, manganese, magnesium, zinc and copper in aviation kerosene samples from four producing areas. The recoveries of standard addition were be-tween 96% and 103%.

参考文献

[1] 徐伟池;方磊;郭金涛;王丹;唐成.喷气燃料生产技术现状及发展趋势[J].化工中间体,2011(2):19-22.
[2] 秦芳;李鹏远;耿媛媛.浅谈生产3号喷气燃料质量管控的关键点[J].标准科学,2015(8):75-78.
[3] 王书俊;王志华;李昂.累积进样石墨炉原子吸收光谱法直接测定喷气燃料中痕量钒[J].分析测试学报,2006(3):77-79,82.
[4] 付伟;韩青飞;陶志平.喷气燃料中金属离子对热安定性的影响[J].石油炼制与化工,2015(1):10-14.
[5] 谭吉华;段菁春.中国大气颗粒物重金属污染、来源及控制建议[J].中国科学院研究生院学报,2013(2):145-155.
[6] 杨道武;伍娟娟;袁丹;刘慧;张馨睿.火焰原子吸收光谱法测定变压器油中的微量铜[J].光谱实验室,2013(1):216-219.
[7] 邹丽;李传真.火焰原子吸收光谱法测定汽油中锰含量[J].当代化工,2016(5):1050-1051,1061.
[8] 姚丽珠;王月江.火焰原子吸收光谱法测定汽油中铁镍铜[J].冶金分析,2007(12):70-72.
[9] 顾声音;张燕;王菊;姚隆丹;张柳容.微乳液进样-石墨炉原子吸收光谱法测定芝麻油中铅[J].绵阳师范学院学报,2012(5):57-60.
[10] 邵波;谢怀中;金孝纯.应用MIBK-冰醋酸体系改进无铅汽油中铅含量的测定[J].光谱实验室,2000(2):199-203.
[11] 杨艳红;吕焕明;宿鑫.原子吸收光谱法在测定汽油中金属元素的应用[J].品牌与标准化,2015(6):53-57.
[12] 祁鲁梁;武荣鑫.ICP-AES法测定轻油中微量金属元素[J].分析试验室,1988(03):18.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%