欢迎登录材料期刊网

材料期刊网

高级检索

铅锭样品经硝酸(1+3)溶解,分别用氨水和硝酸(1+3)调节溶液的pH值约为3.1,加入10 m L 100 g/L硝酸锰溶液,于70℃的温度下,在0.47~0.70 m o l/L硝酸中加入10 m L 10 g/L高锰酸钾溶液并不断搅拌,利用二氧化锰与铋共沉淀的特性实现了铋与基体铅的分离,将过滤所得沉淀用盐酸双氧水混合酸(49+2)溶解,以10%~25%(V/V)盐酸为测定溶液介质,选择223.1 nm为测定波长,建立了火焰原子吸收光谱法(FAAS)测定铅锭样品中铋的方法.在选定的仪器条件下,铋在0.50~5.00μg/m L范围内和其对应的吸光度呈良好的线性关系,相关系数r=0.9998,铋的方法检出限为0.0028μg/m L.干扰试验表明,铅锭中分离后余下的铅及其他元素不干扰对铋的测定.将实验方法应用于4个质量分数为0.00039%~0.062%的铅锭标准样品中铋的测定,结果与认定值基本一致,相对标准偏差(RSD,n=11)在0.67%~8.1%之间,加标回收率为98%~102%.

The lead ingot sample was dissolved with nitric acid (1+3) .The pH of sample solution was ad-justed to about 3 .1 with ammonia and nitric acid (1+3) .After adding 10 mL of 100 g/L manganese nitrate— 16 —solution ,10 mL of 10 g/L potassium permanganate solution was added into 0 .47-0 .70 mol/L nitric acid at 70 ℃under stirring .The separation of bismuth from matrix lead was realized by the co-precipitation char-acteristic between manganese dioxide and bismuth .The precipitate was dissolved with hydrochloric acid-hydrogen peroxide mixture (49+2) .The determination method of bismuth in lead ingots by flame atomic absorption spectrometry (FAAS) was established using 10%-25% (V/V ) as determination medium and 223 .1 nm as determination wavelength .Under the selected optimal instrumental conditions ,the concentra-tion of bismuth in range of 0 .50-5 .00 μg/mL showed good linearity to its corresponding absorbance with correlation coefficient of r=0 .9998 .The detection limit of bismuth in this method was 0 .0028 μg/mL . The interference tests showed that the residual lead and other elements in lead ingots had no interference with the determination of bismuth .The experimental method was applied to the determination of bismuth in four lead ingot standard samples with mass fraction of 0 .00039%-0 .062% .The found results were ba-sically consistent with the certified values .The relative standard deviations (RSD ,n=11) were between 0 .67% and 8 .1% .T he recoveries w ere betw een 98% and 102% .

参考文献

[1] 李虬玉.ICP-AES法测定铅锭中锡、锑、砷、铋、铜、锌、铁、银[J].汽车科技,1994(03):55.
[2] 杨秀艳;韩艳萍.ICP-OES法测定铅锭中微量杂质元素[J].蓄电池,2013(3):137-139.
[3] 张遴;卢玉琦;高若煜;杨光.氢化物发生-原子荧光光谱法测定铅锭中砷锑铋[J].理化检验化学分册,2000(1):26-28.
[4] 冯先进.氢化物-原子荧光光谱法测定高纯铅中微量铋的方法研究[J].矿冶,2002(03):96-98.
[5] 刘长东;国凤杰.火焰原子吸收光谱法连续测定纯铅中锑铋[J].理化检验-化学分册,2004(2):100-100,102.
[6] 仓田奈津子.二氧化锰共沉淀金属炉原子吸收法测定铜中锡、锑、铋[J].有色矿冶,1991(04):56-61.
[7] 韩春玉;GUO Yang;张颖;WU Yu-chun.火焰原子吸收光谱法测定铝及铝合金中痕量铅的新方法--水合二氧化锰共沉淀分离富集技术在铝工业分析中的应用[J].轻金属,2008(4):66-68.
[8] 张毅,汪明礼,李振东.铋盐共沉淀分离富集火焰原子吸收法测定酱油中痕量铅[C].光谱仪器与分析(第十三届全国光谱仪器与分析监测学术研讨会:论文专辑),2003:69-70.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%