欢迎登录材料期刊网

材料期刊网

高级检索

中国超过50%钛资源在高炉冶炼过程中进入炉渣,渣中TiO2的质量分数高达20%~30%,是一种高附加值二次资源,但在对该资源综合利用过程中,始终未能解决经济提取、硅钛难分,二次污染严重等问题.在热力学理论指导下进行真空碳热还原-酸浸联合工艺处理含钛高炉渣制备TiC研究.研究表明,碳热还原温度越高或相同温度下真空度越高越有利于炉渣中各成分还原;随着真空度增加碳热还原温度要求降低;当温度达到1 573K,真空度为1 Pa,可将SiO2还原得到具有高蒸气压的SiO、MgO被还原为Mg蒸气而离开体系,可实现渣中硅镁与钛彻底分离;真空碳热还原含钛高炉渣制备TiC的最佳条件:还原温度1673 K,炉渣粒度75μm占80%,渣碳质量比100∶38.

More than 50% titanium resource is concentrated in the slag during extracting Fe by blast furnace process.Blast furnace slag,containing 20%-30% titanium dioxide,is a kind of the valuable secondary resources.However,there are some problems in the process of comprehensive utilization of the titanium resources.Such as high cost,difficult separation of titania and sinica,serious second pollution and so on.Preparation of TiC from the blast furnace slag bearing titanium by carbothermal reduction in vacuum and acid leaching process based on the thermodynamics results was researched.The results show that the higher the carbon thermal reduction temperature or the vacuum at the same temperature,the more helpful it will be to slag reduction.The reduction temperature decreases with increasing of the vacuum degree.SiO2 and MgO can be reduced to SiO and Mg with high vapor pressure at 1 573 K and 1 Pa which can leave from the slag systerm.The optimum conditions for preparation of TiC using the blast furnace slag bearing titanium by carbothermal reduction in vacuum are 80 % slag with size of 75μm,temperature of 1 673 K,the mass ratio of the slag and carbon is 100 ∶ 38.

参考文献

[1] 涂亚芳;牛晓娟.Ce掺杂TiO2纳米薄膜的制备及其光催化性能研究[J].江汉大学学报:自然科学版,2012(6):17-20.
[2] CHEN Guo;CHEN Jin;PENG Jin-hui;WAN Run-dong.Green evaluation of microwave-assisted leaching process of high titanium slag on life cycle assessment[J].中国有色金属学报(英文版),2010(z1):198-204.
[3] 肖兴成;江伟辉;王永兰.钛渣微晶玻璃晶化工艺的研究[J].玻璃与搪瓷,1999(2):7.
[4] 汪朋;韩兵强;韩彦蕾;柯昌明;李楠.攀钢高炉渣提钛后尾渣水化性能研究[J].硅酸盐通报,2008(6):1208-1211.
[5] 邹星礼;鲁雄刚.攀枝花含钛高炉渣直接制备钛合金[J].中国有色金属学报,2010(9):1829-1835.
[6] 薛庆国;蓝荣宗;王静松;韩毅华;王琳涛.基于氧气高炉的烧结矿还原动力学分析[J].重庆大学学报:自然科学版,2012(11):67-74.
[7] 李兴华;王雪松;刘知路;张江平.高钛高炉渣综合利用新方向[J].钢铁钒钛,2009(3):10-16.
[8] 熊瑶;梁斌;李春.自然冷却含钛高炉渣中钛的提取与分离[J].过程工程学报,2008(6):1092-1097.
[9] 刘晓华;隋智通.含Ti高炉渣的加压酸解[J].中国有色金属学报,2002(6):1281-1284.
[10] 陈启福.攀钢高炉渣提取TiO2及Sc2O3扩大试验[J].钢铁钒钛,1995(03):64.
[11] 周志明;张丙怀;朱子宗.高钛型高炉渣的渣钛分离试验[J].钢铁钒钛,1999(4):35.
[12] 仝启杰;齐涛;刘玉民;王丽娜;张懿.KOH亚熔盐法制备钛酸钾晶须和二氧化钛[J].过程工程学报,2007(1):85-89.
[13] 隋智通;郭振中;张力;张林楠;王明玉;娄太平;李光强.含钛高炉渣中钛组分的绿色分离技术[J].材料与冶金学报,2006(2):93-97.
[14] L. Zhang;L.N. Zhang;M.Y. Wang.Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition[J].Minerals Engineering,20077(7):684-693.
[15] 郭培民;赵沛.从相图分析含钛高炉渣选择性分离富集技术[J].钢铁钒钛,2005(2):5-10.
[16] 文玲;张金柱.含钛高炉渣性能的研究进展[J].钢铁研究学报,2011(5):1-3,19.
[17] 郭振中;张力;李大纲;娄太平;隋智通.氧化对含钛高炉渣钛组分走向的作用[J].钢铁研究学报,2007(9):6-8.
[18] 张悦;杨合;王丽;薛向欣.用含钛高炉渣制备肥料[J].东北大学学报(自然科学版),2010(8):1161-1164,1169.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%