欢迎登录材料期刊网

材料期刊网

高级检索

氢能具有清洁、高效及可再生利用的特点,是未来有发展前景的新型能源之一.开发出经济、高效及安全的储存技术是氢能大规模应用的关键,相对于高压气态储氢和液化储氢,通过氢与材料间的相互作用形成固溶体或配位氢化物的固态储氢技术因储氢容量高且安全性好,被认为是最有发展前景的储存方式.配位氢化物中的LiBH4的理论储氢容量高达18.5%(质量分数),远超车载氢源系统重量储氢容量大于5%的要求,是当前高容量储氢材料的典型代表及研究热点,但面临着严重的吸放氢热力学、动力学问题.从改善LiBH4的吸放氢性能出发,分析了储氢技术、储氢材料的研究进展,综述了近年来采取的主要措施,特别是添加适当反应物来形成复合储氢体系,掺杂阴阳离子以改变电负性,添加催化剂,减小品粒尺寸及采用纳米填充法等几个方面的研究成果和研究进展,重点关注其吸放氢机制、吸放氢容量、吸放氢温度及条件、吸放氢反应热力学及动力学等问题.高容量储氢材料LiBH4是车载氢源系统实用化的关键,在现有基础上研发出吸放氢迅速、吸放氢量大、吸放氢可逆、室温操作的方法及体系,是未来研究的重点.

参考文献

[1] Brenda Johnston;Michael C. Mayo;Anshuman Khare .Hydrogen: the energy source for the 21st century[J].Technovation: The International Journal of Technological Innovation, Entrepreneurship and Technology Management,2005(6):569-585.
[2] Andreas Zuttel;Andreas Borgschulte;Shin-Ichi Orimo .Tetrahydroborates as new hydrogen storage materials[J].Scripta materialia,2007(10):823-828.
[3] 邓光霞,赵旭山,王树茂,李志念,刘晓鹏,蒋利军.Ti-Zr系吸氢材料的研究[J].稀有金属,2013(02):237-242.
[4] 张书成,罗永春,曾书平,王可,康龙.镁含量对稀土-镁-镍系A2B7型储氢合金电极自放电性能的影响[J].稀有金属,2013(04):511-520.
[5] G.Liang;J.Huot;R.Schulz .Hydrogen storage properties of the mechanically alloyed LaNi_5-based materials[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2001(1):133-139.
[6] Kodama T. .Proposal for new indexes describing the degree of hysteresis and those applications to the ZrMn2-H-2 systems[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,1998(1/2):194-200.
[7] O. Friedrichs;F. Buchter;A. Borgschulte .Direct synthesis of Li[BH_4] and Li[BD_4] from the elements[J].Acta materialia,2008(5):949-954.
[8] Vajo JJ;Skeith SL;Mertens F .Reversible storage of hydrogen in destabilized LiBH4[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,2005(9):3719-3722.
[9] Hans Hagemann;Moise Longhini;Jakub W. Kaminski .LiSc(BH4)4: A Novel Salt of Li~+ and Discrete Sc(BH4)_4~- Complex Anions[J].The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory,2008(33):7551-7555.
[10] Yin LC;Wang P;Fang ZZ;Cheng HM .Thermodynamically tuning LiBH4 by fluorine anion doping for hydrogen storage: A density functional study[J].Chemical Physics Letters,2008(4-6):318-321.
[11] Ming Au;Arthur R. Jurgensen;William A. Spencer .Stability and Reversibility of Lithium Borohydrides Doped by Metal Halides and Hydrides[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2008(47):18661-18671.
[12] Z. Z. Fang;L. P. Ma;X. D. Kang;P. J. Wang;P. Wang;H. M. Cheng .In situ formation and rapid decomposition of Ti(BH_(4))_(3) by mechanical milling LiBH_(4) with TiF_(3)[J].Applied physics letters,2009(4):044104-1-044104-3-0.
[13] S M Opalka;X Tang;B L Laube;T H Vanderspurt .Experimental and theoretical screening of nanoscale oxide reactivity with LiBH_4[J].Nanotechnology,2009(20):204024-9.
[14] Gross AF;Vajo JJ;Van Atta SL;Olson GL .Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2008(14):5651-5657.
[15] Z.Z. Fang;P. Wang;T.E. Rufford .Kinetic- and thermodynamic-based improvements of lithium borohydride incorporated into activated carbon[J].Acta Materialia,2008(20):6257-6263.
[16] Yu XB;Wu Z;Chen QR;Li ZL;Weng BC;Huang TS .Improved hydrogen storage properties of LiBH4 destabilized by carbon[J].Applied physics letters,2007(3):34106-1-34106-3-0.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%