总结了近年来对RE-Mg-Ni系超点阵合金晶体结构、储氢性能、热处理改性以及失效机制等方面的研究进展.作为继AB5型合金之后的新一代镍氢电池负极材料,该系合金在电化学容量和高倍放电能力(HRD)等方面具有更大的潜力.通过合理的元素替代和热处理能够显著改善RE-Mg-Ni合金的储氢性能,但在高容量和大倍率放电能力的前提下保证合金具有优良的循环稳定性仍是该系合金开发的关键.RE-Mg-Ni体系中存在多种化合物相,随成分和制备工艺的不同,RE-Mg-Ni合金呈现复杂的多相组织.合理调控组织结构是改善合金放电性能和循环稳定性的重要途径.提高RE-Mg-Ni合金循环稳定性的关键在于抑制合金充放电过程中的粉化、腐蚀以及吸放氢循环过程中的氢致非晶化.
参考文献
[1] | J. Chen;N. Kuriyama;H. T. Takeshita;H. Tanaka;T. Sakai;M. Haruta .Hydrogen Storage Alloys with PuNi_3-Type Structure as Metal Hydride Electrodes[J].Electrochemical and solid-state letters,2000(6):249-252. |
[2] | Kohno T.;Yoshida H. .Hydrogen storage properties of new ternary system alloys: La_2MgNi_9, La_5Mg_2Ni_(23), La_3MgNi_(14)[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2000(2):L5-L7. |
[3] | Y.J. Chai;K. Sakaki;K. Asano .Crystal structure and hydrogen storage properties of La-Mg-Ni-Co alloy with superstructure[J].Scripta materialia,2007(6):545-548. |
[4] | Junxian Zhang;Benjamin Villeroy;Bernard Knosp;Patrick Bernard;Michel Latroche .Structural and chemical analyses of the new ternary La_5MgNi_(24) phase synthesized by Spark Plasma Sintering and used as negative electrode material for Ni-MH batteries[J].International journal of hydrogen energy,2012(6):5225-5233. |
[5] | Q.A. Zhang;G. Pang;T.Z. Si .Crystal structure and hydrogen absorption-desorption properties of Ca_3Mg_2Ni_(13)[J].Acta materialia,2009(6):2002-2009. |
[6] | Denys, RV;Riabov, AB;Yartys, VA;Sato, M;Delaplane, RG .Mg substitution effect on the hydrogenation behaviour, thermodynamic and structural properties of the La2Ni7-H(D)(2) system[J].Journal of Solid State Chemistry,2008(4):812-821. |
[7] | Jin Nakamura;Kenji Iwase;Hiroshi Hayakawa .Structural Study of La4MgNi_(19) Hydride by In Situ X-ray and Neutron Powder Diffraction[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2009(14):5853-5859. |
[8] | 彭成红 .AB<,3>基混合稀土—镁—镍系多相合金的组织与储氢特性[D].华南理工大学,2004. |
[9] | Hongge Pan;Yongfeng Lin;Mingxia Gao .A Study of the Structural and Electrochemical Properties of La_(0.7)Mg_(0.3) (Ni_(0.85)Co_(0.15))_x (x=2.5-5.0) Hydrogen Storage Alloys[J].Journal of the Electrochemical Society,2003(5):A565-A570. |
[10] | Guo J;Huang D;Li GX;Ma SY;Wei WL .Effect of La/Mg on the hydrogen storage capacities and electrochemical performances of La-Mg-Ni alloys[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,2006(1/3):169-172. |
[11] | Dong, XP;Lue, FX;Zhang, YH;Yang, LY;Wang, XL .Effect of La/Mg on the structure and electrochemical performance of La-Mg-Ni system hydrogen storage electrode alloy[J].Materials Chemistry and Physics,2008(2/3):251-256. |
[12] | R. Tang;Y. Liu;C. Zhu .Effect of Al substitution for Co on the hydrogen storage characteristics of Ml_(0.8)Mg_(0.2)Ni_(3.2)Co_(0.6-x)Al_x (x = 0-0.6) alloys[J].Intermetallics,2006(4):361-366. |
[13] | Zhenwei Dong;Liqun Ma;Xiaodong Shen;Limin Wang;Yaoming Wu;lidong Wang .Cooperative effect of Co and Al on the microstructure and electrochemical properties of AB_3-type hydrogen storage electrode alloys for advanced MH/Ni secondary battery[J].International journal of hydrogen energy,2011(1):893-900. |
[14] | Peng Zhang;Yongning Liu;Jiewu Zhu;Xuedong Wei;Guang Yu .Effect of Al and W substitution for Ni on the microstructure and electrochemical properties of La_(1.3)CaMg_(0.7)Ni_(9-x)(Al_(0.5)W_(0.5))_x hydrogen storage alloys[J].International journal of hydrogen energy,2007(13):2488-2493. |
[15] | He Miao;Yongfeng Liu;Yan Lin;Dan Zhu;Lei Jiang;Hongge Pan .A study on the microstructures and electrochemical properties of La_(0.7)Mg_(0.3)Ni_(2.45-x)Cr_xCo_(0.75)Mn_(0.1)Al_(0.2) (x = 0.00-0.20) hydrogen storage electrode alloys[J].International journal of hydrogen energy,2008(1):134-140. |
[16] | Huang Taizhong;Wu Zhu;Han Jitian;Sun Guoxin;Yu Jiemei;Cao Xianqi;Xu Naixin;Zhang Yihe .Study on the structure and hydrogen storage characteristics of as-cast La_(0.7)Mg_(0.3)Ni_(3.2)Co_(0.35-x)Cu_x alloys[J].International journal of hydrogen energy,2010(16):8592-8596. |
[17] | GUO Peipei,LIN Yufang,ZHAO Haihua,GUO Shihai,ZHAO Dongliang.Structure and high-temperature electrochemical properties of La0.60Nd0.15Mg0.25Ni3.3Si0.10 hydrogen storage alloys[J].稀土学报(英文版),2011(06):574-579. |
[18] | Zhenwei Dong;Liqun Ma;Yaoming Wu;Limin Wang;Xiaodong Shen .Microstructure and electrochemical hydrogen storage characteristics of (La_(0.7)Mg_(0.3))_(1-x)Ce_xNi_(2.8)Co_(0.5) (x = 0-0.20) electrode alloys[J].International journal of hydrogen energy,2011(4):3016-3021. |
[19] | Hongge Pan;Shuai Ma;Jia Shen;Junjun Tan;Jilu Deng;Mingxia Gao .Effect of the substitution of PR for LA on the microstructure and electrochemical properties of La_(0.7_x)Pr_xMg_(0.3)Ni_(2.45)Co_(0.75)Mn_(0.1) Al_(0.2) (x =0.0-0.3) hydrogen storage electrode alloys[J].International journal of hydrogen energy,2007(14):2949-2956. |
[20] | 刘永锋,金勤伟,高明霞,朱云峰,张志鸿,潘洪革.热处理对La0.7Mg0.3Ni2.8Co0.5贮氢合金电化学性能的影响[J].稀有金属材料与工程,2003(11):942-945. |
[21] | 李蒙,朱磊,尉海军,简旭宇.La-Mg-Ni系A5B19相储氢合金热处理工艺研究[J].稀有金属,2012(02):236-241. |
[22] | SONG Dawei,WANG Yijing,LIU Yi,HAN Shumin,JIAO Lifang,YUAN Huatang.Effects of annealing on microstructures and electrochemical properties of La0.8Mg0.2Ni2.4Mn0.10Co0.55Al0.10 alloy[J].稀土学报(英文版),2008(03):398-401. |
[23] | Yang-huan Zhang;Ying Cai;Chen Zhao;Ting-ting Zhai;Guo-fang Zhang;Dong-liang Zhao .Electrochemical performances of the as-melt La_(0.75-x)M_xMg_(0.25)Ni_(3.2)Co_(0.2)Al_(0.1) (M = Pr, Zr; x = 0, 0.2) alloys applied to Ni/metal hydride (MH) battery[J].International journal of hydrogen energy,2012(19):14590-14597. |
[24] | 周增林,宋月清,崔舜,林晨光,郭志猛,曲选辉.热处理对La-Mg-Ni系贮氢电极合金性能的影响(Ⅱ)贮氢及电化学性能[J].稀有金属材料与工程,2008(06):964-969. |
[25] | 张法亮 .La-Mg-Ni系新型贮氢合金结构与电化学性能的研究[D].兰州理工大学,2006. |
[26] | Z.Y. Liu;X.I. Yan;N. Wang;Y.J. Chai;D.I. Hou .Cyclic stability and high rate discharge performance of (La,Mg)_5Ni_(19) multiphase alloy[J].International journal of hydrogen energy,2011(7):4370-4374. |
[27] | 王伟,陈云贵,吴朝玲.LaNi2.5M0.5(M=Ni,Fe,Mn,Si)贮氢合金氢致非晶研究[J].稀有金属材料与工程,2011(12):2080-2082. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%