为解决TiO2对太阳能有效利用率低、光生电子与空穴再复合率高、光催化活性低且难回收等应用难题,利用静电纺丝技术成功地制备了纳米 Ag-碳纳米管(CNT)-混晶 TiO2复合纤维,并采用 SEM、XRD、EDS 及 Ra-man等表征方法详细分析了材料的微观结构与组分,研究了纳米 Ag-CNT-混晶TiO2复合纤维对亚甲基蓝的光催化活性。结果表明:锐钛矿与金红石相TiO2混晶不仅可降低材料的禁带宽度,还能减缓光生电子与空穴的复合淬灭;纳米 Ag颗粒的局域表面等离激元共振可增强 Ag-CNT-混晶 TiO2复合纤维的光吸收,CNT 能促进光生电子与空穴的有效分离;纳米 Ag-CNT-混晶TiO2复合纤维对亚甲基蓝的首次降解率可达97.5%,且5次催化循环后对亚甲基蓝的降解率仍保持在90.0%以上。所得结论表明静电纺丝制备的新型纳米 Ag-CNT-混晶 TiO2复合纤维是一种高活性的光催化剂,且容易回收,具有光降解亚甲基蓝的应用前景。
In order to solve the application problems of TiO2 such as the poor effective utilization rate for solar en-ergy,high recombination rate of photoinduced electrons and holes,low photocatalytic activity and difficulty in recy-cle etc.,nano Ag-carbon nanotube (CNT)-mixed crystal TiO2 composite fibers were synthesized successfully by electrospinning technology,and the microstructures and constructions of the materials were analyzed in detail by characterization methods such as SEM,XRD,EDS and Raman etc.,thus the photocatalytic activities of nano Ag-CNT-mixed crystal TiO2 composite fibers for methylene blue were investigated.The results show that the mixed crystal of anatase-and rutile-TiO2 can not only reduce the band gap,but also slow down the combination and cancel-lation of photoinduced electrons and holes.The localized surface plasmon resonance of Ag nanoparticles can enhance the light absorption of nano Ag-CNT-mixed crystal TiO2 composite fibers,and CNT can promote the effective segre-gation of photoinduced electrons and holes.The degradation rate of nano Ag-CNT-mixed crystal TiO2 composite fi-bers for methylene blue in the first cycle reaches 9 7.5%,and the degradation rate for methylene blue after 5 catalyt-ic cycles still retains above 90.0%.The conclusions obtained show that the new type nano Ag-CNT-mixed crystal TiO2 composite fiber prepared by electrospinning is a high-activity photocatalyst and is easy to be recycled,which has application prospects for the photo degradation of methylene blue.
参考文献
[1] | Michael R. Hoffmann;Scot T. Martin;Wonyong Choi;Detlef W. Bahnemann.Environmental Applications of Semiconductor Photocatalysis[J].Chemical Reviews,19951(1):69-96. |
[2] | 黄丹;鄢明;沈琪.亚胺合成吖啶的研究进展[J].有机化学,2004(10):1200-1212. |
[3] | Jih-Jen Wu;Chi-Chung Yu.Aligned TiO_2 Nanorods and Nanowalls[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,200411(11):3377-3379. |
[4] | David O. Scanlon;Charles W. Dunnill;John Buckeridge.Band alignment of mtile and anatase TiO2[J].Nature materials,20139(9):798-801. |
[5] | Akihiko Kudo;Yugo Miseki.Heterogeneous photocatalyst materials for water splitting[J].Chemical Society Reviews,20091(1):253-278. |
[6] | Bakhshayesh, A. M.;Bakhshayesh, N..Enhanced performance of dye-sensitized solar cells aided by Sr,Cr co-doped TiO2 xerogel films made of uniform spheres[J].Journal of Colloid and Interface Science,2015:18-28. |
[7] | Zhu, Jie;Liu, Xiaoqiang;Wang, Xinhai;Huo, Xiaohe;Yan, Rui.Preparation of polyaniline-TiO2 nanotube composite for the development of electrochemical biosensors[J].Sensors and Actuators, B. Chemical,2015Pt.1(Pt.1):450-457. |
[8] | 王勇;张昊;张军;杨青林;郭林.纳米TiO2/再生纤维素复合薄膜的制备及光催化性能[J].复合材料学报,2007(3):35-39. |
[9] | 周琪;钟永辉;陈星;王岩;刘平;吴玉程.石墨烯/纳米TiO2复合材料的制备及其光催化性能[J].复合材料学报,2014(2):255-262. |
[10] | C. Trapalis;N. Todorova;M. Anastasescu;C. Anastasescu;M. Stoica;M. Gartner;M. Zaharescu;T. Stoica.Atomic force microscopy study of TiO_2 sol-gel films thermally treated under NH_3 atmosphere[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,200923(23):6243-6247. |
[11] | Quanjun Xiang;Jiaguo Yu;Mietek Jaroniec.Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity[J].Physical chemistry chemical physics: PCCP,201111(11):4853-4861. |
[12] | Xiang, Q.;Yu, J.;Wang, W.;Jaroniec, M..Nitrogen self-doped nanosized TiO_2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity[J].Chemical communications,201124(24):6906-6908. |
[13] | BLAIR D. JOHNSTON;TESSA M. SCOWN;JULIAN MOGER.Bioavailability of Nanoscale Metal Oxides TiO2, CeO2, and ZnO to Fish[J].Environmental Science & Technology: ES&T,20103(3):1144-1151. |
[14] | Li, Shixiong;Zhao, Zhefei;Huang, Yicao;Di, Jing;Jia, Yi (Alec);Zheng, Huajun.Hierarchically structured WO3-CNT@TiO2NS composites with enhanced photocatalytic activity[J].Journal of Materials Chemistry, A. Materials for energy and sustainability,201510(10):5467-5473. |
[15] | Jiaguo Yu;Quanjun Xiang;Minghua Zhou.Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures[J].Applied Catalysis. B, Environmental,20093/4(3/4):595-602. |
[16] | 陆强;张智博;董长青;张晓媛;崔方明.碳-银共修饰的双晶介孔二氧化钛及其可见光催化活性[J].无机材料学报,2014(12):1333-1338. |
[17] | Tsutomu Hirakawa;Prashant V.Kamat.Charge Separation and Catalytic Activity of Ag@TiO_2 Core-Shell Composite Clusters under UV Irradiation[J].Journal of the American Chemical Society,200511(11):3928-3934. |
[18] | Hao Zhang;Geng Wang;Da Chen.Tuning Photoelectrochemical Performances of Ag—TiO2 Nanocomposites via Reduction/Oxidation of Ag[J].Chemistry of Materials: A Publication of the American Chemistry Society,200820(20):6543-6549. |
[19] | Mi Yeon Song;Do Kyun Kim;Kyo Jin Ihn.Electrospun TiO_2 electrodes for dye-sensitized solar cells[J].Nanotechnology,200412(12):1861-1865. |
[20] | Zheng-Ming Huang;Y.-Z. Zhang;M. Kotaki.A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J].Composites science and technology,200315(15):2223-2253. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%