欢迎登录材料期刊网

材料期刊网

高级检索

使用分离式 Hopkinson压杆(SHPB)系统,在温度293~973 K、应变率6000~10000 s-1下,对原位合成TiC颗粒和TiB晶须混合增强钛基复合材料(TMCs)的动态压缩性能进行了研究。试验结果表明:在373~573 K、673~773 K和873~973 K 范围内 TMCs 流变应力随温度的增加而显著减小;在较低温度(低于373 K)和较低应变率(6000~8000 s-1)下,TMCs呈现小幅的应变率硬化特征,而在较高温度(573 K及以上)时各应变率下TMCs均存在应变率软化特征,且温度越高材料应变率软化效应越明显。材料失效/断裂机制分析表明:应变率软化机制主要是绝热软化及其产生的绝热剪切带(ABS)中微裂纹的形成和扩展的综合作用;在较高的应变率和较大应变下 ABS中会产生微裂纹,温度较低时 TMCs 塑性不足以抑制或阻碍微裂纹的扩展,从而导致 TMCs 在宏观上迅速破坏;材料破坏时以钛合金基体塑性断裂为主,但在局部伴随部分增强相脆性断裂。

Split Hopkinson pressure bar (SHPB)system was used to investigate the dynamic compressive proper-ties of in situ synthesized TiC particles and TiB whisker mixing reinforced titanium matrix composites (TMCs)at the temperature range 293-973 K and the strain rates range 6 000-10 000 s-1 .The test results show that the flow stress of TMCs significantly decreases with the temperature increasing when the temperature is in the range of 373-573 K,673-773 K and 873-973 K.At relatively low temperature (lower than 373 K)and low strain rate (6 000-8 000 s-1 ),TMCs exhibit a slight strain rate hardening characteristic.However,at high temperature (573 K or higher),TMCs present obvious strain softening feature at all strain rates used and the strain rate softening effect is more significant under higher temperature.The analysis on the failure/fracture mechanisms shows that the com-bined effect of the adiabatic softening and the behavior of the micro cracks generation and development in the adia-batic shear band (ABS)are the mechanisms for the strain softening.Under high strain rate combined with high strain,micro cracks initiate in the ABS and will cause the rapidly damage or fracture of TMCs on the macro when the ductility of the TMCs is not high enough to suppress or hinder the development of the micro cracks under rela-tive low temperature.Titanium alloy matrix plastic fracture is the main material damage mode but local brittle frac-ture also presents around the reinforcement phase.

参考文献

[1] 马凤仓 .热加工对原位自生钛基复合材料组织和力学性能影响的研究[D].上海交通大学,2006.
[2] 吕维洁;郭相龙;王立强;覃继宁;张荻.原位自生非连续增强钛基复合材料的研究进展[J].航空材料学报,2014(4):139-146.
[3] Lin Geng;Lujun Huang.High Temperature Properties of Discontinuously Reinforced Titanium Matrix Composites: A Review[J].金属学报(英文版),2014(5):787-797.
[4] Huang, L.J.;Zhang, Y.Z.;Geng, L.;Wang, B.;Ren, W..Hot compression characteristics of TiBw/Ti6Al4V composites with novel network microstructure using processing maps[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:242-249.
[5] Qi, J.Q.;Wang, H.W.;Zou, C.M.;Wei, W.Q.;Wei, Z.J..Temperature dependence of fracture behavior of in situ synthesized TiC/Ti-alloy matrix composite[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201125/26(25/26):7669-7673.
[6] 韩远飞;段宏强;吕维洁;王立强;张荻.非连续增强金属基复合材料剧烈塑性变形行为研究进展[J].复合材料学报,2015(1):1-12.
[7] Li, Shufeng;Kondoh, Katsuyoshi;Imai, Hisashi;Chen, Biao;Jia, Lei;Umeda, Junko.Microstructure and mechanical properties of P/M titanium matrix composites reinforced by in-situ synthesized TiC-TiB[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2015:75-83.
[8] 胡加瑞;肖来荣;罗锴;刘彦;李威;蔡一湘.TiC颗粒增强钛基复合材料的高温变形行为[J].中国有色金属学报,2010(z1):193-197.
[9] Ma FC;Lu WJ;Qin JN;Zhang D.Hot deformation behavior of in situ synthesized Ti composite reinforced with 5 vol.% (TiB+TiC) particles[J].Journal of Materials Science,200716(16):6901-6906.
[10] Wang, B.;Huang, L. J.;Liu, B. X.;Geng, L.;Hu, H. T..Effects of deformation conditions on the microstructure and substructure evolution of TiBw/Ti60 composite with network structure[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2015:316-325.
[11] Weidong Song;Jianguo Ning;Xiaonan Mao;Huiping Tang.A modified Johnson-Cook model for titanium matrix composites reinforced with titanium carbide particles at elevated temperatures[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:280-289.
[12] MIAO Ying-gang;LI Yu-long;DENG Qiong;TANG Zhong-bin;HU Hai-tao;SUO Tao.Investigation on experimental method of low-impedance materials using modified Hopkinson pressure bar[J].北京理工大学学报(英文版),2015(2):269-276.
[13] 索涛;张部声;汤忠斌;戴磊;李玉龙.极端环境下连续碳纤维增韧的陶瓷基复合材料的力学行为[J].实验力学,2014(3):273-278.
[14] 李玉龙;索涛;郭伟国;胡锐;李金山;傅恒志.确定材料在高温高应变率下动态性能的 Hopkinson杆系统[J].爆炸与冲击,2005(6):487-492.
[15] F. R. CHIEN;X. J. NING;A. H. HEUER.SLIP SYSTEMS AND DISLOCATION EMISSION FROM CRACK TIPS IN SINGLE CRYSTAL TiC AT LOW TEMPERATURES[J].Acta materialia,19966(6):2265-2283.
[16] Wang, B.;Huang, L. J.;Geng, L.;Rong, X. D..Compressive behaviors and mechanisms of TiB whiskers reinforced high temperature Ti60 alloy matrix composites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2015:443-451.
[17] 张长清;谢兰生;陈明和;商国强.高应变率下TC4-DT钛合金的动态力学性能及塑性本构关系[J].中国有色金属学报,2015(2):323-329.
[18] 李伟;宋卫东;宁建国;毛小南.应变率及温度对复合材料TP-650力学性能的影响[J].稀有金属材料与工程,2010(7):1195-1198.
[19] Wang, Jiheng;Guo, Xianglong;Qin, Jining;Zhang, Di;Lu, Weijie.Microstructure and mechanical properties of investment casted titanium matrix composites with B4C additions[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2015:366-373.
[20] Y. Yang;Y. Zeng.Damage and fracture mechanism of aluminium alloy thick-walled cylinder under external explosive loading[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20081/2(1/2):378-384.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%