欢迎登录材料期刊网

材料期刊网

高级检索

以壳类植物纤维(榛子壳、椰壳、稻壳)为填料,以聚氯乙烯(PVC)为基体,采用挤出成型工艺制备三种壳类植物纤维/PVC复合材料。对三种壳类植物纤维进行了成分分析;对三种壳类植物纤维/PVC 复合材料进行了力学性能和吸水性能测试,并进行了 FTIR 和 TG-DSC 联用法分析,用 SEM观察了复合材料断面微观结构。结果表明:三种壳类植物材料中,稻壳纤维素含量最高,稻壳纤维/PVC 复合材料有较好的结合界面和力学性能,稻壳纤维/PVC复合材料弯曲强度为69.79 MPa,分别比椰壳纤维/PVC 和榛子壳纤维/PVC 复合材料高4.34%和24.87%。三种壳类植物纤维/PVC复合材料24h 吸水率均小于1%,其中椰壳纤维/PVC 复合材料吸水性较小,其24 h吸水率为0.6005%,榛子壳纤维/PVC复合材料热稳定性较好。三种壳类植物纤维/PVC复合材料力学性能和吸水性均符合国家标准 GB/T 24137—2009和 GB/T 24508—2009要求。

Three types of plant fibers (hazelnut shell,coconut shell,and rice-husk)were separately added into polyvinyl chloride (PVC)as the fillers to prepare three types of husk’s fibers/PVC composites through the extru-sion molding process.The components of the plant fibers were analyzed and the mechanical property and water absorbency capability of the composites were tested.The FTIR spectra analysis and TG-DSC analysis was conducted on the husk’s fibers/PVC composites.The section microstructures of the composites were observed by SEM.The results show that the rice-husk is the richest in cellulose,and rice-husk/PVC composite has the best binding inter-face and mechanical properties with bending strength at 69.79 MPa,which is 4.34% and 24.87% higher than that of the coconut shell/PVC and the hazelnut shell/PVC composites,respectively.The water absorption in 24 h of the comoposites are all below 1%,and the coconut shell/PVC composite has the lowest water absorption rate among them,which is 0.600 5% in 24h,while the hazelnut shell/PVC composite has the best heat stability.The mechani-cal property and water absorbency capability of husk’s fibers/PVC composites are all up to GB/T 24137—2009 and GB/T 24508—2009,respectively.

参考文献

[1] 付文;王丽;刘安华.木塑复合材料改性研究进展[J].高分子通报,2010(3):61-65.
[2] 胡圣飞;胡伟;陈祥星;朱贤兵.木粉/聚丙烯木塑复合泡沫材料吸能特性[J].复合材料学报,2013(5):94-100.
[3] W. Chetanachan;D. Sookkho;D. Sookkho.PVC Wood: A New Look in Construction[J].Journal of Vinyl & Additive Technology,20013(3):134-137.
[4] 刘丽;任秀艳;孙磊.改性木粉/PVC复合材料的应用研究进展[J].中外企业家,2013(29):232-232.
[5] Susan E. Selke;Indrek Wichman.Wood fiber/polyolefin composites[J].Composites, Part A. Applied science and manufacturing,20043(3):321-326.
[6] 何春霞;付菁菁;薛娇;熊静;常萧楠;刘丁宁.硼酸锌含量对麦秸秆/PP复合材料耐霉菌腐蚀性能的影响[J].复合材料学报,2015(4):962-968.
[7] 肖建平;岑兰;陈福林;周彦豪.腰果壳粉/PVC复合材料的结构和性能[J].塑料,2013(1):58-60,85.
[8] 李春霞;沈梅;辛振祥.杜仲翅果壳粉/PVC复合材料力学性能研究[J].塑料包装,2014(3):15-18,14.
[9] 魏哲梅;刘继云;杨学莉;于磊;王罡;张志永;张秀成.PP/核桃壳粉复合材料的制备与性能研究[J].塑料科技,2014(8):70-74.
[10] Haydar U. Zaman;M. D. H. Beg.Effect of Coir Fiber Content and Compatibilizer on the Properties of Unidirectional Coir Fiber/Polypropylene Composites[J].Fibers and Polymers,20144(4):831-838.
[11] 胡圣飞;彭少贤;石彪;赵敏;张冲.PVC/稻壳复合材料力学性能研究及应用[J].工程塑料应用,2009(4):55-58.
[12] Tapasi Mukherjee;Nhol Kao.PLA Based Biopolymer Reinforced with Natural Fibre: A Review[J].Journal of polymers and the environment,20113(3):714-725.
[13] 侯人鸾;何春霞;薛娇;于旻;窦川川.麦秸秆粉/PP木塑复合材料紫外线加速老化性能[J].复合材料学报,2013(5):86-93.
[14] 张敏;强琪;李莉;徐丹;宋吉青.不同植物纤维/PBS复合材料的性能差异比较[J].高分子材料科学与工程,2013(3):69-73.
[15] 魏哲梅 .WSP/PP复合材料的制备与性能研究[D].东北林业大学,2014.
[16] Kaimeng Xu;Kaifu Li;Tuhua Zhong;Chengping Xie.Interface Self-Reinforcing Ability and Antibacterial Effect of Natural Chitosan Modified Polyvinyl Chloride-Based Wood Flour Composites[J].Journal of Applied Polymer Science,20143(3):39854-1-39854-9.
[17] 侯新秀 .麦草基复合包装材料的加工条件与性能研究[D].天津科技大学,2010.
[18] 何春霞;顾红艳;薛盘芳.四种植物纤维粉/聚丙烯复合材料应用性能[J].农业工程学报,2010(2):381-384.
[19] 胡圣飞 .PVC/稻壳粉复合材料结构与性能研究[D].武汉理工大学,2006.
[20] 李东方 .聚乙烯木塑复合材料性能影响因子与界面特性研究[D].北京林业大学,2013.
[21] 刘继云 .NS/PLA复合材料的制备与性能研究[D].东北林业大学,2014.
[22] Zeriouh A.;Belkbir L..THERMAL DECOMPOSITION OF A MOROCCAN WOOD UNDER A NITROGEN ATMOSPHERE[J].Thermochimica Acta: An International Journal Concerned with the Broader Aspects of Thermochemistry and Its Applications to Chemical Problems,19950(0):243-248.
[23] 房轶群 .基于协同成炭木粉-聚氯乙烯复合材料的阻燃抑烟研究[D].东北林业大学,2013.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%