欢迎登录材料期刊网

材料期刊网

高级检索

为了探究黄麻纤维束的尺寸效应和应变率敏感性,利用C43电子式万能试验机和 CEAST 9340落锤试验冲击系统分别在静动载条件下对黄麻纤维束进行测试,获得了杨氏模量、强度、峰值应变和韧性随标距和应变率的变化关系静载试验在1/600 s-1应变率条件下进行,测试了6组不同标距(25、50、100、150、200和300 mm)的试件;动载试验以应变率为变量,在4组不同的应变率(40、80、120和160 s-1)条件下进行了测试,试件标距均为25 mm。测试结果表明:随着试件标距增大,杨氏模量初始增大,当标距大于100 mm时趋于稳定;强度、峰值应变和韧性均减小。随着应变率增大,杨氏模量和强度均增大;峰值应变初始减小后趋于稳定;韧性先减小后增大。鉴于植物纤维束材料较大的性能离散性,采用 Weibull 分布对试验数据进行拟合,获得了黄麻纤维束强度在不同试验条件(标距和应变率)下的分布规律。

In order to investigate the size effect and the sensibility of strain rate of the j ute yarns,the quasi-static tests were conducted by utilizing a C43 electromechanical universal test system and dynamic tests were performed by utilizing a CEAST 9340 drop-weight impact system.The correlations between mechanical parameters (Young’s modulus,tensile strength,ultimate strain and toughness)and experimental conditions (gauge lengths and strain rates)were obtained through the tests.The samples with six different gauge lengths (25,50,100,150,200 and 300 mm)were tested at the strain rate of 1/600 s-1 in the quasi-static tests,and the samples with the gauge length of 25 mm were tested over four different strain rates (40,80,120 and 160 s-1 )in the dynamic tests in which the strain rate was a variable.The experimental results show that Young’s modulus increases initially,and then tends to be stable when the gauge length is larger than 100 mm,while tensile strength,ultimate strain and toughness de-crease with increasing the gauge length.As the strain rate increases,Young’s modulus and tensile strength increase,while ultimate strain decreases initially and then maintains constant,and toughness decreases initially but then increases.Due to the large scatter in the material properties of plant yarns,Weibull distribution was used to fit the experimental data,by which the distribution of tensile strength of the j ute yarns under different experimental conditions (gauge length and strain rate)were obtained.

参考文献

[1] A.D. La Rosa;A. Recca;A. Gagliano;J. Summerscales;A. Latteri;G. Cozzo;G. Cicala.Environmental impacts and thermal insulation performance of innovative composite solutions for building applications[J].Construction and Building Materials,2014Mar.(Mar.):406-414.
[2] Wei, Jianqiang;Meyer, Christian.Degradation mechanisms of natural fiber in the matrix of cement composites[J].Cement and Concrete Research,2015:1-16.
[3] G. RAMAKRISHNA;T. SUNDARARAJAN.Studies on the durability of natural fibres and the effect of corroded fibres on the strength of mortar[J].Cement & concrete composites,20055(5):575-582.
[4] Zhaopeng Xia.Scale Effect on Jute/Cotton Fibres and their Blended Yarns[J].Fibres & textiles in Eastern Europe,20094(4):43-45.
[5] Z.P. Xia;J.Y. Yu;LD. Cheng.Study on the breaking strength of jute fibres using modified Weibull distribution[J].Composites, Part A. Applied science and manufacturing,20091(1):54-59.
[6] Nele Defoirdt;Subhankar Biswas;Linde De Vriese.Assessment of the tensile properties of coir, bamboo and jute fibre[J].Composites, Part A. Applied science and manufacturing,20105(5):588-595.
[7] Mohd Firdaus Omar.Dynamic properties of pultruded natural fibre reinforced composites using Split Hopkinson Pressure Bar technique[J].Materials & design,20109(9):P.4209.
[8] 刘晓烨;戴干策.黄麻纤维毡的表面处理及其增强聚丙烯复合材料的力学性能[J].复合材料学报,2006(5):63-69.
[9] Domenico Asprone;Massimo Durante;Andrea Prota;Gaetano Manfredi.Potential of structural pozzolanic matrix-hemp fiber grid composites[J].Construction and Building Materials,20116(6):2867-2874.
[10] Placet, V.;Cisse, O.;Boubakar, M.L..Influence of environmental relative humidity on the tensile and rotational behaviour of hemp fibres[J].Journal of Materials Science,20127(7):3435-3446.
[11] Flavio de Andrade Silva;Deju Zhu;Barzin Mobasher;Chote Soranakom;Romildo Dias Toledo Filho.High speed tensile behavior of sisal fiber cement composites[J].Materials Science & Engineering. A, Structural Materials: Properties, Misrostructure and Processing,20103(3):544-552.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%