欢迎登录材料期刊网

材料期刊网

高级检索

本文通过对粉体Si进行球磨,结合在球磨产物中引入柠檬酸并对其进行碳热分解处理,制备了一种低碳高SiOx含量的Si@SiOx@C复合材料.采用现代材料分析测试技术和电化学测试技术,研究了500~700℃的碳热分解处理温度对复合材料的结构和其作为锂离子电池负极材料的电化学性能的影响.研究结果表明,不同温度获得的复合材料均为微米/亚微米尺寸的Si核外包覆有不同厚度的SiOx及碳的Si@SiOx@C颗粒,其中650℃条件下制得的复合材料中SiOx和碳的含量分别约为55 wt%和10 wt%.该复合材料作为负极材料,表现出优于其它温度下获得的复合材料的结构和电化学性能,其在不再额外添加碳导电剂的条件下,在300 mA/g充放电时的首次库伦效率为74%,经200次循环后的容量为776 mAh/g,容量保持率达75%.该低碳含量的微米/亚微米尺寸的Si基负极材料振实密度高,对于获得高体积比容量的电池极具使用潜力.

参考文献

[1] 冯冉;高明霞;王朋;唐渊波;刘永锋;潘洪革.纳米CuO/Cu负极材料的热氧化制备及其结构和电化学性能[J].材料科学与工程学报,2012(2):245-250,279.
[2] M. N. Obrovac;Leif Christensen.Structural Changes in Silicon Anodes during Lithium Insertion/Extraction[J].Electrochemical and solid-state letters,20045(5):A93-A96.
[3] Dingsheng Wang;Mingxia Gao;Hongge Pan.Enhanced cycle stability of micro-sized Si/C anode material with low carbon content fabricated via spray drying and in situ carbonization[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2014:130-136.
[4] 叶冉;成果;詹亮;张秀云;刘春法;梁晓怿;乔文明;凌立成.锂离子电池用Si/针状焦复合负极材料的改性及其电化学性能[J].材料科学与工程学报,2010(1):44-48.
[5] Ma, H;Cheng, F;Chen, J;Zhao, J;Li, C;Tao, Z;Liang, J.Nest-like silicon nanospheres for high-capacity lithium storage[J].Advanced Materials,200722(22):4067-4070.
[6] Ying Xiao;Di Hao;Huixin Chen.Economical Synthesis and Promotion of the Electrochemical Performance of Silicon Nanowires as Anode Material in Li-Ion Batteries[J].ACS applied materials & interfaces,20135(5):1681-1687.
[7] Song, T.;Xia, J.;Lee, J.-H.;Lee, D.H.;Kwon, M.-S.;Choi, J.-M.;Wu, J.;Doo, S.K.;Chang, H.;Park, W.I.;Zang, D.S.;Kim, H.;Huang, Y.;Hwang, K.-C.;Rogers, J.A.;Paik, U..Arrays of sealed silicon nanotubes as anodes for lithium ion batteries[J].Nano letters,20105(5):1710-1716.
[8] 樊星;张辉;杜宁;徐小燕;杨德仁.NiSix/Ge核壳纳米线作为锂离子电池负极材料的电化学性能[J].材料科学与工程学报,2012(6):831-834.
[9] 宋尊庆;张辉;杜宁;杨德仁.NiSix/Si/Ge核壳纳米棒阵列作为锂离子电池负极材料的电化学性能[J].材料科学与工程学报,2013(5):660-663.
[10] Dingsheng Wang;Mingxia Gao;Hongge Pan;Junhua Wang;Yongfeng Liu.High performance amorphous-Si@SiO_x/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization[J].Journal of Power Sources,2014Jun.15(Jun.15):190-199.
[11] Igor Kovalenko;Bogdan Zdyrko;Alexandre Magasinski;Benjamin Hertzberg;Zoran Milicev;Ruslan Burtovyy;Igor Luzinov;Gleb Yushin.A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries[J].Science,2011Oct.7 TN.6052(Oct.7 TN.6052):75-79.
[12] N.-S. Choi;K.H. Yew;K.Y. Lee.Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode[J].Journal of Power Sources,20062(2):1254-1259.
[13] Guo BK;Shu J;Wang ZX;Yang H;Shi LH;Liu YN;Chen LQ.Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries[J].Electrochemistry communications,200812(12):1876-1878.
[14] Won-Seok Chang;Cheol-Min Park;Jae-Hun Kim;Young-Ugk Kim;Goojin Jeong;Hun-Joon Sohn.Quartz (SiO_2): a new energy storage anode material for Li-ion batteries[J].Energy & environmental science: EES,20125(5):6895-6899.
[15] Soojin Sim;Pilgun Oh;Soojin Park;Jaephil Cho.Critical Thickness of SiO_2 Coating Layer on Core@Shell Bulk@Nanowire Si Anode Materials for Li-Ion Batteries[J].Advanced Materials,201332(32):4498-4503.
[16] Lee JW;Kong S;Kim WS;Kim J.Preparation and characterization of SiO2/TiO2 core-shell particles with controlled shell thickness[J].Materials Chemistry and Physics,20071(1):39-44.
[17] Lu Yue;Wenhui Zhang;Jingfeng Yang;Lingzhi Zhang.Designing Si/porous-C composite with buffering voids as high capacity anode for lithium-ion batteries[J].Electrochimica Acta,2014:206-217.
[18] Su, LW;Zhou, Z;Ren, MM.Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries[J].Chemical communications,201015(15):2590-2592.
[19] Chuang Yue;Yingjian Yu;ZhenGuo Wu.Enhanced reversible lithium storage in germanium nano-island coated 3D hexagonal bottle-like Si nanorod arrays[J].Nanoscale,20143(3):1817-1822.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%